Skip to main content
Log in

Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiation-induced grafting of acrylic acid onto alginate/chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of Co-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted and un-grafted beads was performed by FTIR spectroscopy and the swelling measurements at different pHs was studied. It is found that as the pH value increases the swelling degree increases up to pH 6 but with further increase in pH value the swelling decreases. Also, it is noticed that the grafting yield increased with increase the irradiation dose. Both un-grafted and grafted alginate/chitosan beads were examined as sorbents for the removal of Pb ions from aqueous solutions. The sorption behavior of the sorbents was examined through pH, and equilibrium measurements. Grafted alginate/chitosan beads presented higher sorption capacity for Pb ions than un-grafted beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stevens JB (1991) Environ Sci Technol 25:1289

    Article  CAS  Google Scholar 

  2. Zaijun L, Jian T, Jiaomai P (2004) Food Control 15:565

    Article  Google Scholar 

  3. Burke DM, Morris MA, Holmes JD (2013) Chemical oxidation of mesoporous carbon foams for lead ion adsorption. Sep Purif Technol 104:150–159

    Article  CAS  Google Scholar 

  4. Wang Y, Wang X, Wang X, Liu M, Wu Z, Yang L et al (2013) Adsorption of Pb(II) from aqueous solution to Ni-doped bamboo charcoal. J Ind Eng Chem 19:353–359

    Article  CAS  Google Scholar 

  5. Idris A, Ismail NSM, Hassan N, Misran E, Ngomsik A-F (2012) Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J Ind Eng Chem 18:1582–1589

    Article  CAS  Google Scholar 

  6. Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B 103:523–529

    Article  CAS  Google Scholar 

  7. Rahmani A, Zavvar Mousavi H, Fazli M (2010) Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253:94–100

    Article  CAS  Google Scholar 

  8. Dong L, Zhu Z, Ma H, Qiu Y, Zhao J (2010) Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. J Environ Sci 22:225–229

    Article  CAS  Google Scholar 

  9. Heidari A, Younesi H, Mehraban Z (2009) Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem Eng J 153:70–79

    Article  CAS  Google Scholar 

  10. Lawal OS, Sanni AR, Ajayi IA, Rabiu OO (2010) Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead (II) ions onto the seed husk of Calophyllum inophyllum. J Hazard Mater 177:829–835

    Article  CAS  Google Scholar 

  11. O¨nal S, Baysal SH, Ozdemir G, Adebowale Kayode O (2007) Studies on the applicability of alginate-entrapped Chryseomonas luteola TEM 05 for heavy metal biosorption. J Hazard Mater 146:417–420

    Article  Google Scholar 

  12. Unuabonah EI, El-Khaiary MI, Olu-Owolabid BI, Adebowale KO (2012) Chem Eng Res Des 90:1105–1115

    Article  CAS  Google Scholar 

  13. Wan Ngah WS, Endud CS, Mayanar R (2002) Removal of copper (II) ions from aqueous solution onto chitosan and crosslinked chitosan beads. React Funct Polym 50:181–190

    Article  Google Scholar 

  14. George B, Pillai VNR, Mathew B (1999) Effect of the nature of the crosslinking agent on the metal-ion complexation characteristics of 4 mol% DVB and NMBA crosslinked polyacrylamide-supported glycines. J Appl Polym Sci 74:3432–3444

    Article  CAS  Google Scholar 

  15. Mathew B, Pillai VNR (1993) Polymer-metal complexes of amino functionalized divinylbenzene-crosslinked polyacrylamides. J Polym 34:2650–2658

    Article  CAS  Google Scholar 

  16. Kas¸go¨ z H, O¨ zgu¨mu¨ s¸ S, Orbay M (2001) Preparation of modified polyacrylamide hydrogels and application in removal of Cu (II) ion. J Polym 42:7497–7502

    Article  Google Scholar 

  17. Kaşgöz H, Özgümüş S, Orbay M (2003) Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer 44:1785–1793

    Article  Google Scholar 

  18. Rivas BL, Seguel GV, Geckeler KE (2002) Synthesis, characterization and properties of polychelates of poly (styrene sulfonic acid-co-maleic acid) with Co (II), Cu (II), Ni (II) and Zn (II). J Appl Polym Sci 85:2546–2551

    Article  CAS  Google Scholar 

  19. Masri MS, Reuter FW, Friedman M (1974) Binding of metal cations by natural substances. J Appl Polym Sci 18:675–681

    Article  Google Scholar 

  20. Kaminski W, Modrzejewsk Z (1997) Application of chitosan membranes in separation of heavy metal ions. Sep Sci Technol 32(16):2659–2688

    Article  CAS  Google Scholar 

  21. Mckay G, Blair HS, Chem AFIJO (1989) Equilibrium studies for the sorption of metal ions onto chitosan. Ind J Chem 28A:356–360

    CAS  Google Scholar 

  22. Bajpai SK, Sharma S (2004) Investigation of swelling/degradation behavior of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym 59:129–140

    Article  CAS  Google Scholar 

  23. Singh V, Sharma AK, Tripathi DN, Sanghi R (2009) Poly (methylmethacrylate) grafted chitosan: an efficient adsorbent for anionic azo dyes. J Hazard Mater 161:955–966

    Article  CAS  Google Scholar 

  24. Long Z, Hiroshi M (2009) Hydrogels of dihydroxy propyl chitosan crosslinked with irradiation at paste-like condition. Carbohydr Polym 76(2):314–319

    Article  Google Scholar 

  25. Udayabhaskar P, Iyengar L, Rao AVSP (1990) Hexavalent chromium interaction with chitosan. J Appl Polym Sci 39:739–749

    Article  Google Scholar 

  26. Ng JCY, Cheung WH, Mckay G (2002) Equilibrium studies of the sorption of Cu (II) ions onto chitosan. J. Colloid Interface Sci 255:64–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Ismail Abou El Fadl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou El Fadl, F.I. Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption. J Radioanal Nucl Chem 301, 529–535 (2014). https://doi.org/10.1007/s10967-014-3149-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3149-3

Keywords

Navigation