Skip to main content
Log in

Development of an extractive spectrophotometric method for uranium using MWCNTs as solid phase and arsenazo(III) as chromophore

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (MWCNTs) based sorptive extraction method for uranium (U) from aqueous solutions has been developed. The proposed method was optimized by evaluating the analytical parameters including pH, eluent type, flow rates of sample and eluent, etc. The adsorption capacity of MWCNTs was found to be 9.80 μg g−1, while the detection limit based on 3σ criterion was 1.9 μg L−1. The presented method was applied for the estimation of U in ore sample. Effect of potentially interfering ions was also studied and were found to inert not interfering with U during the analysis. The results suggest that MWCNTs can be used as reliable solid phase for preconcentration and arsenazo-III as chromophore for U spectrometric determination from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yemalyanov VS, Yevstyukhin AI (1969) The Metallurgy of Nuclear Fuel. Atomizdat, Moscow

    Google Scholar 

  2. Agency for toxic substances and disease registry, US public health service (2000), Chapman and Hall, New York

  3. Suresh A, Patre DK, Srinivasan TG, Rao PRV (2002) A new procedure for the spectrophotometric determination of uranium(VI) in the presence of a large excess of thorium(IV). Spectrochimica Acta Part A 58:341–347

    Article  CAS  Google Scholar 

  4. Rathore DPS (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77:9–20

    Article  CAS  Google Scholar 

  5. Sundar U, Ramamurthy V, Buche V, Rao DN, Sivadasan PC, Yadav RB (2007) Rapid measurements of concentrations of natural uranium in process stream samples via gamma spectrometry at an extraction facility. Talanta 73:476–482

    Article  CAS  Google Scholar 

  6. Piech R, Bas B, Kubiak WW (2007) The cyclic renewable mercury film silver based electrode for determination of uranium(VI) traces using adsorptive stripping voltammetry. Electroanalysis 19:2343–2350

    Article  Google Scholar 

  7. Nivens DA, Zhang Y, Angel SM (2002) Detection of uranyl ion via fluorescence quenching and photochemical oxidation of calcein. J Photochem Photobiol A Chem 152:167–173

    Article  CAS  Google Scholar 

  8. Anwar M, Mohammad D (1989) Potentiometric determination of free acidity and uranium in uranyl nitrate solutions. J Radioanal Nucl Chem 134:45–51

    Article  CAS  Google Scholar 

  9. Lakar MM, Branica M (1989) Stripping voltammetric determination of trace levels of uranium by synergic adsorption. Anal Chim Acta 221:279–287

    Article  Google Scholar 

  10. McMahon AW (1993) Application of analytical methods based on X-ray spectroscopy to the determination of radio nuclides. Sci Total Environ 130:285–295

    Article  Google Scholar 

  11. Aydin FA, Soylak M (2007) Solid phase extraction and pre-concentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination. Talanta 72:192–197

    Article  Google Scholar 

  12. Rozmaric M, Ivsic AG, Grahek Z (2007) Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection. Talanta 80:352–362

    Article  Google Scholar 

  13. Shinotsuka K, Ebihara M (1997) Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry a comparative study with radiochemical neutron activation analysis. Anal Chim Acta 338:237–246

    Article  CAS  Google Scholar 

  14. Benedik L, Vasile M, Spasova Y, Wätjen U (2009) Sequential determination of 210 Po and uranium radioisotopes in drinking water by alpha-particle spectrometry. Appl Radiat Isot 67:770–775

    Article  CAS  Google Scholar 

  15. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169

    Article  CAS  Google Scholar 

  16. Hosseini MS, Raissi H, Yavari HR (2006) Synergistic flotation of U(VI)–alizarin complex with some diamines followed by spectrophotometric determination of U(VI) using 4,4-diaminophenylmethane. Anal Chim Acta 559:181–185

    Article  CAS  Google Scholar 

  17. Ru Y, Yan L, Guilan S, Tao W, Jiaomai P (1995) Spectrophotometric determination of uranium in natural water with the new chromogenic reagent p-carboxychlorophosphonazo. Anal Chim Acta 314:95–99

    Article  Google Scholar 

  18. Leong CL, Florence TM, Farrar Y (1973) Spectrophotometric determination of uranium(VI) with chromazurol S and cetylpyridinium bromide. Anal Chem 45:201–203

    Article  CAS  Google Scholar 

  19. Florence TM, Farrar YJ (1963) Spectrophotometric determination of uranium with 4-(2-pyridylazo) resorcinol. Anal Chem 35:1613–1616

    Article  CAS  Google Scholar 

  20. Lutfullah Alam MN, Rahman N, Azmi SNH (2008) Optimized and validated spectrophotometric method for the determination of uranium(VI) via complexation with meloxicam. J Hazard Mater 155:261–268

    Article  CAS  Google Scholar 

  21. Jie C, Zaijun L, Ming L (2008) Spectrophotometric determination of ultra trace uranium(VI) in seawater after extractive pre-concentration with ionic liquid and dimethylphenylazosalicylfluorone. Int J Environ Anal Chem 88:583–590

    Article  Google Scholar 

  22. Motojima K, Yoshida H, Izawa K (1960) Spectrophotometric determination of small amounts of uranium with 8-quinolinol. Anal Chem 32:1083–1085

    Article  CAS  Google Scholar 

  23. Ramakrishna TV, Murthy RSS (1980) Spectrophotometric determination of uranium with anthranilic acid and rhodamine 6G. Talanta 27:442–444

    Article  CAS  Google Scholar 

  24. Madrakian T, Afkhami A, Mousavi A (2007) Spectrophotometric determination of trace amounts of uranium(VI) in water samples after mixed micelle-mediated extraction. Talanta 71:610–614

    Article  CAS  Google Scholar 

  25. Das SK, Kedari CS, Tripathi SC (2010) Spectrophotometric determination of trace amount of uranium (VI) in different aqueous and organic streams of nuclear fuel processing using 2-(5-bromo-2-pyridylazo-5-diethylaminophenol). J Radioanal Nucl Chem 285:675–681

    Article  CAS  Google Scholar 

  26. Shemirani F, Kozani RR, Jamali MR, Assadi Y, Milani SMR (2005) Micelle-mediated extraction for direct spectrophotometric determination of trace uranium(VI) in water samples. Sep Sci Technol 40:2527–2537

    Article  CAS  Google Scholar 

  27. Currah JE, Beamish FE (1947) Colorimetric determination of uranium with thiocyanate. Anal Chem 19:609–612

    Article  CAS  Google Scholar 

  28. Faust SD, Aly OM (1987) Adsorption processes for water treatment. Butterworth, Boston

    Google Scholar 

  29. El Aamrani FZ, Duro L, de Pablo J, Bruno J (2002) Experimental study and modeling of the sorption of uranium (VI) onto olivine-rock. Appl Geochem 17:399–408

    Article  Google Scholar 

  30. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium(VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64:2431–2438

    Article  CAS  Google Scholar 

  31. Xu Y, Zondlo JW, Finklea HO, Brennsteiner A (2000) Electrosorption of uranium on carbon fibers as a means of environmental remediation. Fuel Process Technol 68:189–208

    Article  CAS  Google Scholar 

  32. Akhtar K, Akhtar MW, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Res 41:1366–1378

    Article  CAS  Google Scholar 

  33. Niu Z, Fan Q, Wang W, Xu J, Chen L, Wu W (2009) Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radiat Isot 67:1582–1590

    Article  CAS  Google Scholar 

  34. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93:127–143

    Article  CAS  Google Scholar 

  35. Fasfous II, Dawoud JN (2012) Uranium(VI) Sorption by multiwalled carbon nanotubes from aqueous solution. Appl Surf Sci 259:433–440

    Google Scholar 

  36. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  37. Salam MA, Burk R (2010) Thermodynamics and kinetics studies of pentachlorophenol adsorption from aqueous solutions by multi-walled carbon nanotubes. Water Air Soil Pollut 210:101–111

    Article  Google Scholar 

  38. Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131

    Article  CAS  Google Scholar 

  39. Chen GC, Shan XQ, Zhou YQ, Shen X, Huang HL, Khan SU (2009) Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. J Hazard Mater 169:912–918

    Article  CAS  Google Scholar 

  40. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  41. Suárez B, Simonet BM, Cárdenas S, Valcárcel M (2007) Determination of non-steroidal anti-inflammatory drugs in urine by combining an immobilized carboxylated carbon nanotubes mini column for solid-phase extraction with capillary electrophoresis-mass spectrometry. J Chromatogr A 1159:203–207

    Article  Google Scholar 

  42. Carabineiro SAC, Thavorn-amornsri T, Pereira MFR, Serp P, Figueiredo JL (2012) Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal Today 186:29–34

    Article  CAS  Google Scholar 

  43. Lu C, Su F (2007) Adsorption of natural organic matter by carbon nanotubes. Sep Purif Technol 58:113–121

    Article  CAS  Google Scholar 

  44. Yang K, Xing B (2009) Adsorption of fulvic acid by carbon nanotubes from water. Environ Pollut 157:1095–1100

    Article  CAS  Google Scholar 

  45. Yan H, Gong A, He H, Zhou J, Wei Y, Lv L (2006) Adsorption of micro cystines by carbon nanotubes. Chemosphere 62:142–148

    Article  CAS  Google Scholar 

  46. Khan MH, Hasany SM, Khan MA (1994) Spectrophotometric determination of micro amounts of thorium with disodium salt of 2-(2-hydroxy-3,6-disulfo-1-naphthylazo) benzenearsonic acid (thorin) as a chromogenic reagent. J Radioanal Nucl Chem 188:341–353

    Article  CAS  Google Scholar 

  47. Rohwer H, Rheeder N, Hosten E (1997) Interactions of uranium and thorium with arsenazo-III in an aqueous medium. Anal Chim Acta 341:263–268

    Article  CAS  Google Scholar 

  48. Khan MH, Ali A, Khan NN (2001) Spectrophotometric determination of thorium with disodium salt of arsenazo-III in perchloric acid. J Radioanal Nucl Chem 353:353–357

    Article  Google Scholar 

  49. Goossens J, Moens L, Dams R (1995) Inductively coupled plasma mass spectrometric determination of heavy metals in soil and sludge candidate reference materials. Anal Chim Acta 304:307–315

    Article  CAS  Google Scholar 

  50. Singh BN, Maiti B (2006) Separation and pre-concentration of U(VI) on XAD-4 modified with 8-hydroxy quinoline. Talanta 69:393–396

    Article  CAS  Google Scholar 

  51. Hosten E, Rohwer HE (1997) Complexation reactions of uranyl with arsenazo III. Anal Chim Acta 355:95–100

    Article  CAS  Google Scholar 

  52. Behpour M, Ghoreishi SM, Nikkhah Qamsari Z, Samiei M, Soltani N (2010) Solid phase extraction of uranium by naphthalenemethyltrioctylammonium chloride and arsenazo(III) adsorbent and subsequent spectrophotometric determination. Chin J Chem 28:1457–1462

    Article  CAS  Google Scholar 

  53. Aydin FA, Soylak M (2007) Solid phase extraction and pre-concentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination. Talanta 72:187–192

    Article  CAS  Google Scholar 

  54. Cyriac B, Balaji BK (2010) A novel method of synthesizing solid phase adsorbent silica modified with xylenol orange: application for separation, pre-concentration and determination of uranium in calcium rich hydro-geochemical samples and sea water—Part 1. Microchim Acta 171:33–40

    Article  CAS  Google Scholar 

  55. Kazeraninejad M, Haji Shabani AM, Dadfarnia S, Ahmadi SH (2011) Solid phase extraction of trace amounts of U(VI) from water samples using 8-hydroxyquinoline immobilized on surfactant coated alumina. J Anal Chem 66:11–15

    Article  CAS  Google Scholar 

  56. Amin AS (2012) Solid-phase extraction using polymer-based cartridge modified with 2-(2-benzothiazolylazo)-3-hydroxyphenol for pre-concentration of U(VI) ions from water and real samples. Spectrosc Lett 45:246–255

    Article  CAS  Google Scholar 

  57. Sadeghi S, Sheikhzadeh E (2008) Solid phase extraction using silica gel functionalized with sulfasalazine for pre-concentration of U(VI) ions from water samples. Microchim Acta 163:313–320

    Article  CAS  Google Scholar 

  58. Gladis JM, Rao TP (2002) Solid phase-extractive pre-concentration of uranium on to 5,7-dichloroquinoline-8-ol modified napthalene. Anal Lett 35:501–515

    Article  CAS  Google Scholar 

  59. Liu Y, Cao X, Le Z, Luo M, Xub W, Huang G (2010) Pre-concentration and determination of trace U(VI) in environments using ion-imprinted chitosan resin via solid phase extraction. J Braz Chem Soc 21:533–540

    Article  CAS  Google Scholar 

  60. Ozdemir S, Kilinc E (2012) Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of U(VI) prior to its spectrophotometric determination. Microchim Acta. doi:10.1007/s00604-012-0841-2

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Scientific and Technological Research Council of Turkey (TÜBİTAK) for “2216 Research Fellowship Programme for Foreign Citizens” and financial supports. The authors are also grateful for the financial support of the Unit of the Scientific Research Project of Erciyes University (Project no: FBA-12-3822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, F., Soylak, M., Kazi, T.G. et al. Development of an extractive spectrophotometric method for uranium using MWCNTs as solid phase and arsenazo(III) as chromophore. J Radioanal Nucl Chem 296, 1239–1245 (2013). https://doi.org/10.1007/s10967-012-2376-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2376-8

Keywords

Navigation