Skip to main content
Log in

Characterization and properties of Pleurotus mutilus fungal biomass as adsorbent of the removal of uranium(VI) from uranium leachate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Removal and recovery of uranium from dilute aqueous solutions by dead fungal biomass (Pleurotus mutilus) have been studied by biosorption. The parameters that affect the uranium(VI) adsorption, such as: pH solution, temperature, biomass particle size and speed of stirring have been investigated and optimized. The experimental data were analyzed using pseudo-first-order and pseudo-second-order equations. The Freundlich and Langmuir adsorption models have been used for the mathematical description of the adsorption equilibrium. The maximum uranium biosorption capacity has been calculated. The value obtained (636.9 mg g−1) showed that P. mutilus is a good adsorbent. Also, the chemical bands involved in uranium link have been identified. We have applied this biosorption to actual waste uranium leachate, the results are satisfactory and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akhtar K, Akhtar W, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Res 41:1366–1378

    Article  CAS  Google Scholar 

  2. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  3. Bal Y, Bal KE, Laarbi-Bouamrane O, Lallam A (2006) Copper(II) uptake by Pleurotus mutilus biomass, chitin and chitosan. Miner Eng 19:1456–1458

    Article  CAS  Google Scholar 

  4. Bayramoglu G, Celik G, Arica MY (2006) Studies on accumulation of uranium by fungus Lentinus sajor-caju. J Hazard Mater B136:345–353

    Article  Google Scholar 

  5. Bhainsa KC, D’Souza FS (1999) Biosorption of uranium(VI) by Aspergillus fumigates. Biotechnol Tech 13:695–699

    Article  CAS  Google Scholar 

  6. Bhat SV, Meloa JS, Chaugule BB, D’Souza SF (2008) Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater 158:628–635

    Article  CAS  Google Scholar 

  7. Chergui A, Kerbachi R, Junter GA (2009) Biosorption of hexacyanoferrate(III) complex anion to dead biomass of the basidiomycete Pleurotus mutilus: biosorbent characterization and batch experiments. Chem Eng J 147:150–160

    Article  CAS  Google Scholar 

  8. Doshi H, Arabinda R, Kothari IL (2007) Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Curr Microbiol 54:213–218

    Article  CAS  Google Scholar 

  9. Febrianto J, Kosasih AN, Sunarso J, Ju Y, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  10. Fowle DA, Fein JB, Martin AM (2000) Experimental study of uranyl adsorption on Bacillus subtilis. Environ Sci Technol 34:3737–3741

    Article  CAS  Google Scholar 

  11. González-Muñoz MT, Merroun ML, Ben Omar N, Arias JM (1997) Biosorption of uranium by Myxococcus xanthus. Int Symp Proc 40:107–114

    Google Scholar 

  12. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342

    Article  CAS  Google Scholar 

  13. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Proc Biochem 34:451–465

    Article  CAS  Google Scholar 

  14. Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    Article  CAS  Google Scholar 

  15. Kapoor A, Viraraghavan T (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour Technol 61:221–227

    Article  CAS  Google Scholar 

  16. Mameri N, Boudries N, Addour L, Belhocine D, Lounici H, Grib H, Pauss A (1999) Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Res 33:1347–1354

    Article  CAS  Google Scholar 

  17. Mellah A, Chegrouche S, Barkat M (2005) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Coll Int Sci 296:434–441

    Article  Google Scholar 

  18. Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. App Environ Microbiol 71:5532–5543

    Article  CAS  Google Scholar 

  19. Montel JM, Devidal JL, Avignant D (2002) X-ray diffraction study of brabantite–monazite solid solutions. Chem Geol 191:89–104

    Article  CAS  Google Scholar 

  20. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96:1241–1248

    Article  CAS  Google Scholar 

  21. Riordan C, Bustard M, Putt R, McHale AP (1997) Removal of uranium from solution using residual brewery yeast: combined biosorption and precipitation. Biotechnol Lett 19:385–387

    Article  CAS  Google Scholar 

  22. Sar P, D’Souza SF (2002) Biosorption of thorium(IV) by a Pseudomonas biomass. Biotechnol Lett 24:239–243

    Article  CAS  Google Scholar 

  23. Sari M, Mendil D, Tuzen M, Soylak M (2008) Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chem Eng J 144:1–9

    Article  CAS  Google Scholar 

  24. Seyve C (2005) Les rejets radioactifs des installations nucléaires. Rev Gen Nucleaire ISSN 0335-5004: 37–41

    Google Scholar 

  25. Suhasini IP, Sriram G, Asolekar SR, Sureshkumar GK (1999) Biosorptive removal and recovery of cobalt from aqueous systems. Proc Biochem 34:239–347

    Article  CAS  Google Scholar 

  26. Tsezos M, Volesky B (1982) The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 24:955–969

    Article  CAS  Google Scholar 

  27. Vijayaraghavan K, Han MH, Choi SB, Yun YS (2007) Biosorption of reactive black 5 by Corynebacterium glutamicum biomass immobilized in alginate and polysulfone matrices. Chemosphere 68:1838–1845

    Article  CAS  Google Scholar 

  28. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  Google Scholar 

  29. Yang J, Volesky B (1999) Biosorption of uranium on Sargassum biomass. Water Res 33:3357–3363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Doctor Abed Belkassemi from SAIDAL Medea for providing us biomass samples. We gratefully acknowledge the contribution of Doctor Salah Chegrouche from Nuclear Research Centre of Draria (in Algiers) for his useful help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Mezaguer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezaguer, M., Kamel, N., Lounici, H. et al. Characterization and properties of Pleurotus mutilus fungal biomass as adsorbent of the removal of uranium(VI) from uranium leachate. J Radioanal Nucl Chem 295, 393–403 (2013). https://doi.org/10.1007/s10967-012-1911-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1911-y

Keywords

Navigation