Skip to main content
Log in

Targetry and specification of 167Tm production parameters by different reactions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In recent years, there has been a rapid expansion in the use of radio nuclides for therapeutic purposes. Thulium–167 is an important radionuclide (T 1/2 = 9.25 d) due to it could be used for tumor and bone studies in nuclear medicine. 167Tm complexed with hydroxy ethylene diamine tetra-acetic acid (HEDTA) could be used with the aim of bone imaging. 167Tm emits a prominent γ ray of 208 keV energy and low energy electrons. This study describes calculations on the excitation functions of 165Ho(α,2n)167Tm, 167Er(p,n)167Tm, natEr(d,xn)167Tm and natEr(p,xn)167Tm reactions by ALICE/ASH (hybrid and GDH models) and TALYS-1.0 codes. In addition, calculated data by codes were compared to experimental data that earlier were published and TENDL-2010 database. Moreover, optimal thickness of the targets and physical yield were obtained by SRIM (stopping and range of ions in matter) code for each reaction. According to the results, the 167Er(p,n)167Tm and 165Ho(α,2n)167Tm reactions are suggested as the best method to produce 167Tm owing to minimum impurities. The TALYS-1.0 code, predict the maximum cross-section of about 382 mb at 11 MeV and 849 mb at 26 MeV for 167Er(p,n)167Tm and 165Ho(α,2n)167Tm reactions, respectively. Finally, deposition of natEr2O3 on Cu substrate was carried out via the sedimentation method. The 516 mg of erbium(III)oxide with 103.2 mg of ethyl cellulose and 8 mL of acetone were used to prepare a natEr2O3 layer of 11.69 cm2. 167Tm was produced via the natEr(p,n)167Tm nuclear process at 20 μA current and 15 → 7 MeV protons beam (1 h). Yield of about 3.2 MBq 167Tm per μA h were experimentally obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sadeghi M, Bakht MK, Mokhtari L (2011) Practicality of the cyclotron production of radiolanthanide142Pr: a potential for therapeutic applications and biodistribution studies. J Radioanal Nucl Chem 288:937–942

    Article  CAS  Google Scholar 

  2. Bakht MK, Sadeghi M (2011) Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann Nucl Med. doi:10.1007/s12149-011-0505-z

  3. Ando A, Ando I, Sakamoto K, Hiraki T, Hisada K, Takeshita M (1983) Affinity of 167Tm-citrate for tumor and liver tissue. Eur J Nucl Med Mol Imaging 8:440–446

    Article  CAS  Google Scholar 

  4. Beyer GJ, Franke WG, Hennig K, Johannsen BA, Khalkin VA, Kretzschmar M, Lebedev NA, Munze R, Novgorodov AF, Thieme K (1978) Comparative kinetic studies of simultaneously injected 167Tm and 67Ga citrate in normal and tumour bearing mice. Appl Radiat Isot 29:673–681

    Article  CAS  Google Scholar 

  5. Uusijärvi H, Bernhardt P, Rösch F, Maecke HR, Forssell-Aronsson E (2006) Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med 47:807–814

    Google Scholar 

  6. Yano Y, Chu P (1975) Cyclotron-produced thulium-167 for bone and tumor scanning. Inter J Nucl Med Biol 2:135–139

    Article  CAS  Google Scholar 

  7. Tárkányi F, Hermanne A, Király B, Takács S, Ignatyuk AV (2010) Study of excitation functions of alpha-particle induced nuclear reactions on holmium for 167Tm production. Appl Radiat Isot 68:404–411

    Article  Google Scholar 

  8. Tárkányi F, Hermanne A, Takács S, Király B, Spahn I, Ignatyuk AV (2010) Experimental study of the excitation functions of proton induced nuclear reactions on 167Er for production of medically relevant 167Tm. Appl Radiat Isot 68:250–255

    Article  Google Scholar 

  9. Tárkányi F, Takács S, Hermanne A, Ditrói F, Király B, Baba M, Ohtsuki T, Kovalev SF, Ignatyuk AV (2008) Study of activation cross sections of proton induced reactions on erbium for practical applications. Nucl Instrum Methods B 266:4872–4876

    Article  Google Scholar 

  10. Hermanne A, Adam Rebeles R, Tárkányi F, Takács S, Király B, Ignatyuk AV (2011) Cross sections for production of longer lived 170, 168, 167Tm in 16 MeV proton irradiation of natEr. Nucl Instrum Methods Phys Res B 269:695–699

    Article  CAS  Google Scholar 

  11. Tárkányi F, Hermanne A, Király B, Takács S, Ditrói F, Baba M, Ohtsuki T, Kovalev SF, Ignatyuk AV (2007) Study of activation cross-sections of deuteron induced reactions on erbium: production of radioisotopes for practical applications. Nucl Instrum Methods Phys Res Sect B 259:829–835

    Article  Google Scholar 

  12. Hermanne A, Adam Rebeles R, Tárkányi F, Takács S, Spahn I, Ignatyuk AV (2011) High yield production of the medical radioisotope 167Tm by the 167Er(d, 2n) reaction. Appl Radiat Isot 69:475–481

    Article  CAS  Google Scholar 

  13. Tárkányi F, Hermanne A, Takács S, Ditrói F, Király B, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2009) Activation cross-sections of proton induced nuclear reactions on ytterbium up to 70 MeV. Nucl Instrum Methods Phys Res Sect B 267:2789–2801

    Article  Google Scholar 

  14. Király B, Tárkányi F, Takács S, Hermanne A, Kovalev SF, Ignatyuk AV (2008) Excitation functions of alpha-induced nuclear reactions on natural erbium. Nucl Instrum Methods Phys Res B 266:549–554

    Article  Google Scholar 

  15. Scholz KL, Sodd VJ, Blue JW (1976) Production of thulium-167 for medical use by irradiation of lutetium, hafnium, tantalum and tungsten with 590 MeV protons. Appl Radiat Isot 27:263–266

    Article  CAS  Google Scholar 

  16. Broeders CHM, Konobeyev AYu, Korovin YuA, Lunes VP, Blann M (2006) ALICE/ASH–Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reaction at intermediate energies, FZK-7183. http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf

  17. Koning AJ, Hilaire SD, Duijvestijn MC (2007) TALYS-1.0. In: Proceedings of the international conference on nuclear data for science and technology, Nice, 2007

  18. Koning A J, Rochman D (2010) TENDL-2010: TALYS-based evaluated nuclear data library. Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands, http://www.talys.eu/tendl-2010

  19. Ziegler JF, Biersack JP, Littmark U (2006) The code of SRIM—the stopping and range of ions in matter. IBM Research, New York

    Google Scholar 

  20. de Goeij JJM, Bonardi ML (2005) How do we define the concepts specific activity, radioactive concentration, carrier, carrier-free and no-carrier-added? J Radioanal Nucl Chem 263:13–18

    Article  Google Scholar 

  21. Naught M, Wilkinson A, Nic M, Jirat J, Kosata B, Jenkins A (2006) IUPAC, compendium of chemical terminology. XML on-line corrected version: http://goldbook.iupac.org. ISBN 0-9678550-9-8. doi:10.1351/goldbook

  22. Gadkari MS, Patel HB, Shah DJ, Singh NL (1997) Study of preequilibrium decay in(a, xn) reactions in holmium up to 70 MeV. Physica Scripta 55:147–151

    Article  CAS  Google Scholar 

  23. Singh BP, Prasad R (1995) Measurement and analysis of excitation functions for the reactions 165Ho(a, xn) (x = 1–3) in the energy range 10–40 MeV. Physica Scripta 51:440–445

    Article  CAS  Google Scholar 

  24. Singh NL, Agarrwal S, RamaRao J (1992) Pre-equilibrium neutron emission in alpha particle induced reactions. J Phys 18:927–934

    Article  CAS  Google Scholar 

  25. Mukherjee S, MohanRao AV, RamaRao J (1991) Pre-equilibrium analysis of the excitation functions of (a, xn) reactions on silver and holmium. Nuovo Cimento 104:863–874

    Article  Google Scholar 

  26. Sadeghi M, Zali A, Sarabadani P, Majdabadi A (2009) Targetry of SrCO3 on a copper substrate by sedimentation method for the cyclotron production no-carrier-added 86Y. Appl Radiat Isot 67:2029–2032

    Article  CAS  Google Scholar 

  27. Sadeghi M, Enferadi M, Nadi H (2010) A novel method for the cyclotron production no-carrier-added 93mMo for nuclear medicine. J Radioanal Nucl Chem 286:141–144

    Article  CAS  Google Scholar 

  28. Sadeghi M, Enferadi M, Nadi H (2010) Study of the cyclotron production of 172Lu: an excellent radiotracer. J Radioanal Nucl Chem 286:259–263

    Article  CAS  Google Scholar 

  29. Sadeghi M, Enferadi M, Aboudzadeh M, Sarabadani P (2010) Production of 122Sb for the study of environmental pollution. J Radioanal Nucl Chem 287:585–589

    Article  Google Scholar 

  30. Sadeghi M, Alipoor Z, Kakavand T (2010) Target preparation of RbCl on a copper substrate by sedimentation method for cyclotron production. Nuklenika 55:303–306

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, M., Zandi, N. & Afarideh, H. Targetry and specification of 167Tm production parameters by different reactions. J Radioanal Nucl Chem 291, 731–738 (2012). https://doi.org/10.1007/s10967-011-1422-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1422-2

Keywords

Navigation