Skip to main content
Log in

Removal of uranium(VI) from acetate medium using Lewatit TP 260 resin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Removal of uranium(VI) ions from acetate medium in aqueous solution was investigated using Lewatit TP260 (weakly acidic, macroporous-type ion exchange resin with chelating aminomethylphosphonic functional groups) in batch system. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The moving boundary particle diffusion model only fits the initial metal adsorption on the resin. The rate constant for the uranium sorption by Lewatit TP260 was 0.441 min−1 from the first order rate equation. The total sorption capacity was found to be 58.33 mg g−1 under optimum experimental conditions. Thermodynamic parameters (ΔH = 61.74 kJ/mol; ΔS = 215.3 J/mol K; ΔG = −2.856 kJ/mol) showed the adsorption of an endothermic process and spontaneous nature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173(1–3):589–596

    Article  CAS  Google Scholar 

  2. Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175(1–3):393–398

    Article  CAS  Google Scholar 

  3. Belkhouche N-E, Didi MA, Villemin D (2005) Separation of nickel and copper by solvent extraction using di-2 ethylhexylphosphoric acid-based synergistic mixture. Solvent Extr Ion Exch 23(5):677–693

    Article  CAS  Google Scholar 

  4. Kadous A, Meddour-Boukhobza L, Didi MA, Villemin D (2009) Synthesis and characterization of TOPO and HDADMDPA. Application in URANIUM(VI) extraction. Sci Stud Res X(3):213–226

    Google Scholar 

  5. Kadous A, Didi MA, Villemin D (2009) Extraction of uranium(VI) using D2EHPA/TOPO based supported liquid membrane. J Radioanal Nucl Chem 280(1):157–165

    Article  CAS  Google Scholar 

  6. Belkhouche N-E, Didi MA, Romero R, Jönsson JÅ, Villemin D (2006) Study of new organophosphorus derivates carriers on the selective recovery of M(II) and M(III) metals, using supported liquid membrane extraction. J Membr Sci 284:398–405

    Article  CAS  Google Scholar 

  7. Abderrahim O, Didi MA, Villemin D (2009) Polyethyleneimine methylenephosphonic acid for the solid-phase sorption of lead(II). Anal Lett 42:1233–1244

    Article  CAS  Google Scholar 

  8. Belkhouche N-E, Didi MA (2010) Extraction of Bi(III) from nitrate medium by D2EHPA impregnated onto Amberlite XAD-1180. Hydrometallurgy 103(1–4):60–67

    Article  CAS  Google Scholar 

  9. Kadous A, Didi MA, Villemin D (2010) A new sorbent for uranium extraction: ethylenediamino tris (methylenephosphonic) acid grafted on polystyrene resin. J Radioanal Nucl Chem 284(2):431–438

    Article  CAS  Google Scholar 

  10. Ahmadi SJ, Noori-Kalkhoran O, Shirvani-Arani S (2010) Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO22+) ions. J Hazard Mater 175(1–3):193–197

    Article  CAS  Google Scholar 

  11. Abderrahim O, Didi MA, Villemin D (2009) A new sorbent for uranium extraction polyethyleniminephenylphosphonamidic acid. J Radioanal Nucl Chem 279(1):237–244

    Article  CAS  Google Scholar 

  12. Donat R et al (2009) Adsorption of uranium(VI) onto Ulva sp-sepiolite composite. J Radioanal Nucl Chem 279(1):253–261

    Article  CAS  Google Scholar 

  13. Ansari SA, Mohapatra PK, Manchanda VK (2009) A novel malonamide grafted polystyrene-divinyl benzene resin for extraction pre-concentration and separation of actinides. J Hazard Mater 161(2–3):1323–1329

    Article  CAS  Google Scholar 

  14. Zhao Y et al (2010) Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176(1–3):119–124

    Article  CAS  Google Scholar 

  15. Porsch B, Wittgren B (2005) Analysis of calcium salt of carboxymethyl cellulose: size distributions of parent carboxymethyl cellulose by size-exclusion chromatography with dual light-scattering and refractometric detection. Carbohydr Polym 59(1):27–35

    Article  CAS  Google Scholar 

  16. McKevitt B, Dreisinger D (2009) A comparison of various ion exchange resins for the removal of ferric ions from copper electrowinning electrolyte solutions part I: electrolytes containing no other impurities. Hydrometallurgy 98(1–2):116–121

    Article  CAS  Google Scholar 

  17. Alguacil FJ (2003) A kinetic study of cadmium(II) adsorption on Lewatit TP 260 resin. J Chem Res 2003(3):144–146

    Article  Google Scholar 

  18. Dizge N, Keskinler B, Barlas H (2009) Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. J Hazard Mater 167(1–3):915–926

    Article  CAS  Google Scholar 

  19. Riegel M, Tokmachev M, Hoell WH (2008) Kinetics of uranium sorption onto weakly basic anion exchangers. React Funct Polym 68(6):1072–1080

    Article  CAS  Google Scholar 

  20. Berta Gala’n MaC, Inmaculada Ortiz (2006) Separation and concentration of Cr(VI) from ground waters by anion exchange using Lewatit MP-64: mathematical modelling at acidic pH. Solvent Extr Ion Exch 24:621–637

    Article  Google Scholar 

  21. Silva RMP et al (2008) A comparative study of alginate beads and an ion-exchange resin for the removal of heavy metals from a metal plating effluent. J Environ Sci Health A 43(11):1311–1317

    Article  CAS  Google Scholar 

  22. Bedoui K, Bekri-Abbes I, Srasra E (2008) Removal of cadmium(II) from aqueous solution using pure smectite and Lewatite S 100: the effect of time and metal concentration. Desalination 223(1–3):269–273

    Article  CAS  Google Scholar 

  23. Pehlivan E, Altun T (2007) Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. J Hazard Mater 140(1–2):299–307

    Article  CAS  Google Scholar 

  24. Rohwer H, Rheeder N, Hosten E (1997) Interactions of uranium and thorium with arsenazo III in an aqueous medium. Anal Chim Acta 341(2):263–268

    Article  CAS  Google Scholar 

  25. Puigdomenech I. HYDRA (hydrochemical equilibrium-constant database) and MEDUSA (make equilibrium diagrams using sophisticated algorithms) programs. Royal Institute of Technology, Sweden. http://www.kemi.kth.se/medusa/

  26. Nesterenko PN et al (1999) Aminophosphonate-functionalized silica: a versatile chromatographic stationary phase for high-performance chelation ion chromatography. Microchem J 62(1):58–69

    Article  CAS  Google Scholar 

  27. Metilda P et al (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(VI). Talanta 65(1):192–200

    CAS  Google Scholar 

  28. Venkatesan K et al (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260(3):443–450

    Article  CAS  Google Scholar 

  29. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar 24(4):1–39

    Google Scholar 

  30. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  31. Siva Kesava Raju C, Subramanian MS (2007) Sequential separation of lanthanides thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes. J Hazard Mater 145(1–2):315–322

    Article  Google Scholar 

  32. Helfferich F, Marinksy JA (1996) Ion exchange, vol 1. Marcel Dekker, New York

    Google Scholar 

  33. Chiarizia R, Horwitz EP, Alexandratos SD (1994) Uptake of metal ions by a new chelating ion-exchange resin. Part 4: kinetics. Solvent Extr Ion Exch 12(1):211–237

    Article  CAS  Google Scholar 

  34. Chanda M, Rempel GL (1994) Quaternized poly(4-vinylpyridine) gel-coated on silica. Fast kinetics of diffusion-controlled sorption of organic sulfonates. Ind Eng Chem Res 33(3):623–630

    Article  CAS  Google Scholar 

  35. Choppin GR, Morgenstern A (2000) Thermodynamics of solvent extraction. Solvent Extr Ion Exch 18(6):1029–1049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Rhom and Haas Company for their generous gift of chloromethyl polystyrene and the Tassili program No. 10 MDU799 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Amine Didi or Didier Villemin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadous, A., Didi, M.A. & Villemin, D. Removal of uranium(VI) from acetate medium using Lewatit TP 260 resin. J Radioanal Nucl Chem 288, 553–561 (2011). https://doi.org/10.1007/s10967-010-0970-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0970-1

Keywords

Navigation