Skip to main content
Log in

Specific rebinding of protein imprinted polyethylene glycol grafted calcium alginate hydrogel with different crosslinking degree

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Bovine serum albumin imprinted polyethylene glycol 600 (PEG600) grafted Calcium alginate (CaA) hydrogel microspheres were prepared and characterized. The adsorption and recognition properties of PEG600 grafted calcium alginate (CaA-g-PEG600) microspheres were evaluated and the results showed that the crosslinking structure of CaA-g-PEG600 microspheres exerted an obvious effect on the adsorption capacity and imprinting properties for bovine serum albumin. The adsorption isotherms and recognition properties indicated that the imprinted modified microspheres had excellent rebinding affinity toward target proteins and the imprinting efficiency varied according to PEG600 grafting degree. The adsorption capacity and the imprinting factor were 5.5 mg g−1 and 3.6, respectively. Adsorption kinetics of CaA-g-PEG600 microspheres in accordance with the molecular weight between crosslinks (Mc) was investigated and the structural influence on protein selective rebinding was discussed. Furthermore, the binary solution separation performance of CaA-g-PEG600 microspheres with different Mc was investigated by selective binding bovine serum albumin from protein mixture solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li X, Zhou J, Tian L, Li W, Zafar A, Nisar A, Zhang B, Zhang H, Zhang Q (2016) Effect of crosslinking degree and thickness of thermosensitive imprinted layers on recognition and elution efficiency of protein imprinted magnetic microspheres. Sensors Actuators B 225:436–445

    Article  CAS  Google Scholar 

  2. Sunayama H, Ooya T, Takeuchi T (2014) Fluorescent protein-imprinted polymers capable of signal transduction of specific binding events prepared by a site-directed two-step post-imprinting modification. Chem Commun 50:1347–1349

    Article  CAS  Google Scholar 

  3. Haupt K, Linares AV, Bompart M, Bui BT (2012) Molecularly imprinted polymers. Top Curr Chem 325:1–28

    Article  CAS  Google Scholar 

  4. Moreira FTC, Sharma S, Dutra RAF, Noronha JPC, Cass AEG, Sales MGF (2014) Protein-responsive polymers for point-of-care detection of cardiac biomarker. Sensors Actuators B Chem 196:123–132

    Article  CAS  Google Scholar 

  5. Mahon CS, Fulton DA (2014) Mimicking nature with synthetic macromolecules capable of recognition. J Nat Chem 6:665–672

    Article  CAS  Google Scholar 

  6. Schirhagl R (2014) Bioapplications for molecularly imprinted polymers. J Anal Chem 86:250–261

    Article  CAS  Google Scholar 

  7. Li D, He X, Chen Y, Li W, Zhang Y (2013) Novel hybrid structure silica/cdte/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin. J ACS Appl Mater Interfaces 5:12609–12616

    Article  CAS  Google Scholar 

  8. Yang C, Yan X, Guo H, Fu G (2016) Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links. Biosens Bioelectron 75:129–135

    Article  CAS  Google Scholar 

  9. Li L, Lu Y, Bie Z, Chen H, Liu Z (2013) Photolithographic boronate affinity molecular imprinting: a general and facile approach for glycoprotein imprinting. Angew Chem Int Ed 52:7451–7454

    Article  CAS  Google Scholar 

  10. Kryscio DR, Peppas NA (2012) Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater 8:461–473

    Article  CAS  Google Scholar 

  11. Verheyen E, Schillemans JP, van Wijk M, Demeniex MA, Hennink WE, van Nostrum CF (2011) Challenges for the effective molecular imprinting of proteins. Biomaterials 32:3008–3020

    Article  CAS  Google Scholar 

  12. Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40:1547–1571

    Article  CAS  Google Scholar 

  13. Zayats M, Kanwar M, Ostermeier M, Searson PC (2011) Tuning protein recognition at the molecular level. Macromolecules 44:3966–3972

    Article  CAS  Google Scholar 

  14. Zdyrko B, Hoy O, Luzinov I (2009) Toward protein imprinting with polymer brushes. Biointerphases 4:FA17–FA21

    Article  CAS  Google Scholar 

  15. Asliyuce S, Uzun L, Rad AY, Unal S, Say R, Denizli AJ (2012) Molecular imprinting based composite cryogel membranes for purification of anti-hepatitis B surface antibody by fast protein liquid chromatography. Chromatogr B 889:95–102

    Article  Google Scholar 

  16. Feng H, Mao X, Chu B, Xie C (2014) Influence of gelling properties on protein imprinted agarose gel membrane. J Appl Polym Sci 131:40323

    Article  Google Scholar 

  17. Reddy SM, Hawkins DM, Phan QT, Stevenson D, Warriner K (2013) Protein detection using hydrogel-based molecularly imprinted polymers integrated with dual polarisation interferometry. Sensors Actuators B Chem 176:190–197

    Article  CAS  Google Scholar 

  18. Abdulla R, Ravindra PJ (2013) Characterization of cross linked Burkholderia cepacia lipase in alginate and κ-carrageenan hybrid matrix. Taiwan Inst Chem Eng 44:545–551

    Article  CAS  Google Scholar 

  19. Zhang F, Cheng G, Ying X (2006) Emulsion and macromolecules templated alginate based polymer microspheres. React Funct Polym 66:712–719

    Article  CAS  Google Scholar 

  20. Zeeb B, Saberi AH, Weiss J, McClements DJ (2015) Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH. Soft Matter 11:2228–2236

    Article  CAS  Google Scholar 

  21. Popeski-Dimovski R (2015) Work of adhesion between mucin macromolecule and calcium-alginate gels on molecular level. Carbohydr Polym 123:146–149

    Article  CAS  Google Scholar 

  22. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  23. Herrero EP, Marin Del Valle EM, Peppas NA (2010) Protein imprinting by means of alginate-based polymer microcapsules. Ind Eng Chem Res 49:9811–9814

    Article  CAS  Google Scholar 

  24. Kan B, Lin B, Zhao K, Zhang X, Feng L, Wei J, Fan Y (2014) Imprinting of bovine serum albumin in a nonwoven polypropylene membrane supported polyacrylamide/calcium alginate interpenetrating polymer network hydrogel. RSC Adv 4:55846–55852

    Article  CAS  Google Scholar 

  25. Ying X, Qi L, Li X, Zhang W, Cheng G (2013) Stimuli-responsive recognition of BSA-imprinted poly vinyl acetate grafted calcium alginate Core-Shell hydrogel microspheres. J Appl Polym Sci 127:3898–3909

    Article  CAS  Google Scholar 

  26. Zhao K, Cheng G, Huang J, Ying X (2008) Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. React Funct Polym 68:732–741

    Article  CAS  Google Scholar 

  27. Zhu D, Chen Z, Zhao K, Kan B, Liu L, Dong X, Wang H, Zhang C, Leng X, Zhang L (2015) Polypropylene non-woven supported fibronectin molecular imprinted calcium alginate/polyacrylamide hydrogel film for cell adhesion. Chin Chem Lett 26:807–810

    Article  CAS  Google Scholar 

  28. Li L, Ying X, Liu J, Li X, Zhang W (2015) Protein imprinted polyurethane-grafted calcium alginate hydrogel microspheres. J Appl Polym Sci 132:42140

    Google Scholar 

  29. Zhao K, Lin B, Cui W, Feng L, Chen T, Wei J (2014) Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene. Talanta 121:256–262

    Article  CAS  Google Scholar 

  30. Liu J, Ying X, Wang H, Li X, Zhang W (2016) BSA imprinted polyethylene glycol grafted calcium alginate hydrogel microspheres. J Appl Polym Sci 133:43617

    Google Scholar 

  31. Brandrup J, Immergut EH (1975) Polymer handbook, 2nd edn. Wiley, New York

    Google Scholar 

  32. Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R, Xu Q (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61

    Article  CAS  Google Scholar 

  33. Guo T, Xia Y, Hao G, Song M, Zhang B (2004) Adsorptive separation of hemoglobin bymolecularly imprinted chitosan beads. Biomaterials 25:5905–5912

    Article  CAS  Google Scholar 

  34. Pang X, Cheng G, Lu S, Tang J (2006) Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin. Anal Bioanal Chem 384:225–230

    Article  CAS  Google Scholar 

  35. Pang X, Cheng G, Li R, Lu S, Zhang Y (2005) Bovine serum albumin–imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization. Anal Chim Acta 550:13–17

    Article  CAS  Google Scholar 

  36. Abd El-Ghaffar MA, Hashem MS (2013) Calcium alginate beads encapsulated PMMA-g-CS nano-particles for α-chymotrypsin immobilization. Carbohydr Polym 92:2095–2102

    Article  CAS  Google Scholar 

  37. Wang J, Ying X, Li X, Zhang W (2014) Preparation, characterization and swelling behaviors of polyurethane-grafted calcium alginate hydrogels. Mater Lett 126:263–266

    Article  CAS  Google Scholar 

  38. Samiullah MH, Reichert D, Zinkevich T, Kressler J (2013) NMR characterization of PEG networks synthesized by CuAAC using reactive oligomers. Macromolecules 46:6922–6930

    Article  CAS  Google Scholar 

  39. Li L, Ying X, Liu J, Li X, Zhang W (2015) Molecularly imprinted polyurethane grafted calcium alginate hydrogel with specific recognition for proteins. Mater Lett 143:248–251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of 2017 College Joint Funded Project of Natural Science Foundation of Fujian Province, the China Scholarship Council, Fuzhou University Science Technology Development Fund (2014-XQ-23) and Fuzhou University Postdoctoral Station Fund (XDJ201206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Ying.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ying, X., Liu, J. et al. Specific rebinding of protein imprinted polyethylene glycol grafted calcium alginate hydrogel with different crosslinking degree. J Polym Res 24, 93 (2017). https://doi.org/10.1007/s10965-017-1256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1256-x

Keywords

Navigation