Skip to main content
Log in

A pH-triggered charge reversal and self-fluorescent micelle as a smart nanocarrier for doxorubicin controlled release

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel pH-sensitive charge reversal and self-fluorescent polymeric micelle is designed and synthesized successfully. The smart micelle is prepared based on MPEG-polyurethane multi-block copolymer, which is synthesized by polycondensation, with 1, 4-bis (hydroxyethyl) piperazine (HEP) and hydroxyl-sulfamethazine (Hydroxyl-SM) as pH-sensitive molecules and fluorescein isothiocyanate (FITC) as fluorescent segment. The resulting MPEG-polyurethane multi-block copolymer is examined by 1H–NMR, UV-vis spectra, fluorescence spectra and an acid-base titration. Moreover, the diameter, morphology and cytotoxicity of obtained polymer micelle are measured by dynamic light scattering (DLS), transmission electron microscopy (TEM) and MTT assay. The results indicate that the micelle has a small diameter of less than 200 nm and can remain unchanged within two weeks. Zeta-potential measurement shows that the negative charge of micelle can switch into positive charge as the pH value decreasing from 9.0 to 3.0. Subsequently, the fluorescence intensity decreases significantly with the reducing of pH values. The MTT assay shows the low cytotoxicity and good biocompatibility of the MPEG-polyurethane polymeric micelles. Finally, doxorubicin (DOX) is loaded into micelles to detect in vitro release behavior. The drug loaded micelles show a faster release behavior at pH 5.0 than that at pH 7.4. Therefore, the pH-sensitive charge reversal and self-fluorescent micelle can be a potential smart carrier for delivery and controlled release of protein drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rengaswamy V, Zimmer D, Süss R, Rössler J (2016) RGD liposome-protamine-siRNA (LPR) nanoparticles targeting PAX3-FOXO1 for alveolar rhabdomyosarcoma therapy. J Control Release 235:319–327

    Article  CAS  Google Scholar 

  2. Nakamura H, Abu Lila AS, Nishio M, et al (2015) Intra-tumor distribution of PEGylated liposome upon repeated injection: no possession by prior dose. J Control Release 220:406–413

    Article  CAS  Google Scholar 

  3. Assanhou AG, Li W, Zhang L, et al (2015) Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 73:284–295

    Article  CAS  Google Scholar 

  4. Dhanya S, Bahadur D, Kundu GC, Srivastava R (2013) Maleic acid incorporated poly-(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride. Eur Polym J 49:22–32

    Article  CAS  Google Scholar 

  5. Huang K, Shi B, Xu W, et al (2015) Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomater 27:179–193

    Article  CAS  Google Scholar 

  6. Llacua A, de Haan BJ, Smink SA, de Vos P (2016) Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes: Extracellar matrix components. J Biomed Mater Res A 104:1788–1796

    Article  CAS  Google Scholar 

  7. Ye C, Combs ZA, Calabrese R, et al (2014) Robust microcapsules with controlled permeability from silk fibroin reinforced with graphene oxide. Small 10:5087–5097

    CAS  Google Scholar 

  8. Pavlov AM, De Geest BG, Louage B, et al (2013) Magnetically engineered microcapsules as intracellular anchors for remote control over cellular mobility. Adv Mater 25:6945–6950

    Article  CAS  Google Scholar 

  9. Liu F, Kozlovskaya V, Medipelli S, et al (2015) Temperature-sensitive Polymersomes for controlled delivery of anticancer drugs. Chem Mater 27:7945–7956

    Article  CAS  Google Scholar 

  10. Curcio M, Cirillo G, Vittorio O, et al (2015) Hydrolyzed gelatin-based polymersomes as delivery devices of anticancer drugs. Eur Polym J 67:304–313

    Article  CAS  Google Scholar 

  11. Li H, Fu Y, Zhang T, et al (2015) Rational Design of Polymeric Hybrid Micelles with highly tunable properties to co-deliver MicroRNA-34a and Vismodegib for melanoma therapy. Adv Funct Mater 25:7457–7469

    Article  Google Scholar 

  12. Li W, Zheng C, Pan Z, et al (2016) Smart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapy. Biomaterials 101:10–19

    Article  CAS  Google Scholar 

  13. Bao Y, Yin M, Hu X, et al (2016) A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release 235:182–194

    Article  CAS  Google Scholar 

  14. Zhang Y, Wang C, Huang Y, et al (2015) Core-crosslinked polymeric micelles with high doxorubicin loading capacity and intracellular pH- and redox-triggered payload release. Eur Polym J 68:104–114

    Article  CAS  Google Scholar 

  15. Sun H, Guo B, Cheng R, et al (2009) Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 30:6358–6366

    Article  CAS  Google Scholar 

  16. Sun H, Meng F, Cheng R, et al (2014) Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 21:755–767

    Article  CAS  Google Scholar 

  17. Liu C, Yuan J, Luo X, et al (2014) Folate-decorated and Reduction-sensitive micelles assembled from amphiphilic polymer–Camptothecin conjugates for intracellular drug delivery. Mol Pharm 11:4258–4269

    Article  CAS  Google Scholar 

  18. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48

    Article  Google Scholar 

  19. Tian H, Tang Z, Zhuang X, et al (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  20. Cai M, Leng M, Lu A, et al (2015) Synthesis of amphiphilic copolymers containing zwitterionic sulfobetaine as pH and redox responsive drug carriers. Colloids Surf B Biointerfaces 126:1–9

    Article  CAS  Google Scholar 

  21. Li Y, Heo HJ, Gao GH, et al (2011) Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer 52:3304–3310

    Article  CAS  Google Scholar 

  22. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189–207

    Article  CAS  Google Scholar 

  23. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical Q overview of the prototype polymeric drug SMANCS. J. Controlled Release 74:47–61

    Article  CAS  Google Scholar 

  24. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  25. Kim MS, Lee DS (2010) Biodegradable and pH-sensitive polymersome with tuning permeable membrane for drug delivery carrier. Chem Commun 46:4481

    Article  CAS  Google Scholar 

  26. Zhou K, Wang Y, Huang X, et al (2011) Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed 50:6109–6114

    Article  CAS  Google Scholar 

  27. Wu M, Cao Z, Zhao Y, et al (2016) Novel self-assembled pH-responsive biomimetic nanocarriers for drug delivery. Mater Sci Eng C 64:346–353

    Article  CAS  Google Scholar 

  28. Lee S-M, Cho J-H, Lee S-D, Kim Y-C (2015) Nanoparticle-encapsulated P2X7 receptor antagonist in a pH-sensitive polymer as a potential local drug delivery system to acidic inflammatory environments. Bioorg Med Chem Lett 25:4197–4202

    Article  CAS  Google Scholar 

  29. Torchilin VP (2006) Micellar Nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  Google Scholar 

  30. Ma S-F, Nishikawa M, Katsumi H, et al (2005) Cationic charge-dependent hepatic delivery of amidated serum albumin. J Control Release 102:583–594

    Article  CAS  Google Scholar 

  31. Lee HJ, Pardridge WM (2003) Monoclonal antibody radiopharmaceuticals: Cationization, Pegylation, Radiometal chelation, pharmacokinetics, and tumor imaging. Bioconjug Chem 14:546–553

    Article  CAS  Google Scholar 

  32. Du J-Z, Sun T-M, Song W-J, et al (2010) A tumor-acidity-activated charge-conversional Nanogel as an intelligent vehicle for promoted Tumoral-cell uptake and drug delivery. Angew Chem 122:3703–3708

    Article  Google Scholar 

  33. Zhou Z, Shen Y, Tang J, et al (2009) Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater 19:3580–3589

    Article  CAS  Google Scholar 

  34. Gao GH, Lee JW, Nguyen MK, et al (2011) pH-responsive polymeric micelle based on PEG-poly(β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. J Control Release 155:11–17

    Article  CAS  Google Scholar 

  35. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  Google Scholar 

  36. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607

    Article  CAS  Google Scholar 

  37. Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  CAS  Google Scholar 

  38. Feng L, Liu L, Lv F, et al (2014) Preparation and Biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. Adv Mater 26:3926–3930

    Article  CAS  Google Scholar 

  39. Chen G, Wang L, Cordie T, et al (2015) Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging. Biomaterials 47:41–50

    Article  CAS  Google Scholar 

  40. Song X, Zhang R, Liang C, et al (2015) Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials 57:84–92

    Article  CAS  Google Scholar 

  41. Nagireddy NR, Yallapu MM, Kokkarachedu V, et al (2011) Preparation and characterization of magnetic nanoparticles embedded in hydrogels for protein purification and metal extraction. J Polym Res 18:2285–2294

    Article  CAS  Google Scholar 

  42. Gao L, Song Q, Huang X, Huang J (2008) A new surfactant-fluorescence probe for detecting shape transitions in self-assembled systems. J Colloid Interface Sci 323:420–425

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from National Natural Science Foundation of China (NSFC) (Nos. 51473023 and 51103014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Hui Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S., Gao, Y., Yu, Z. et al. A pH-triggered charge reversal and self-fluorescent micelle as a smart nanocarrier for doxorubicin controlled release. J Polym Res 24, 94 (2017). https://doi.org/10.1007/s10965-017-1255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1255-y

Keywords

Navigation