Skip to main content
Log in

Local structure studies of Ni doped ZnO/PVDF composite free-standing flexible thin films using XPS and EXAFS studies

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Free-standing flexible films of Ni-ZnO/PVDF with three Ni concentrations were obtained by sol–gel technique. The as-deposited and the poled composite Ni-ZnO/PVDF films contained three different amount of Ni doping in ZnO nanocrystals as Zn1−x Ni x O (x = 0.01, 0.04, and 0.09). XANES, XPS measurements have been carried out to investigate the valence states of the host and dopant ions in samples while local environments surrounding Zn and Ni sites have been critically examined using extended EXAFS and XPS measurements to throw a clear insight on the bonding environment in the Ni-ZnO/PVDF films

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mimouni R, Kamoun O, Yumak A, Mhamdi A, Boubaker K, Petkova P, Amlouk M (2015) J Alloy Comp 645:100–111

    Article  CAS  Google Scholar 

  2. Mote VD, Purushotham Y, Dole BN (2013) Cerâmica 59:614–619

    Article  CAS  Google Scholar 

  3. Fabbiyola S, Kennedy LJ, Dakhel AA, Bououdina M, Vijaya JJ, Ratnaji T (2016) J Mol Struct 1109:89–96

    Article  CAS  Google Scholar 

  4. Zhang B, Li M, Wang JZ, Shi LQ, Cheng HS (2013) Mater Sci Appl 4:307–311

    Google Scholar 

  5. Mahmound AB, von Bardeleben HJ, Cantin JL, Mauger A, Chikoidze E, Dumont Y (2006) Phys Rev B 74:115203, 1–5

    Article  Google Scholar 

  6. Zuo Y, Ge S, Chen Z, Zhang L, Zhou X, Yan S (2009) J Alloy Comp 470:47–50

    Article  CAS  Google Scholar 

  7. Wang H, Chen Y, Wang HB, Zhang C, Yang FJ, Duan JX, Yang CP, Xu YM, Zhou MJ, Li Q (2007) Appl Phys Lett 90:052505

    Article  Google Scholar 

  8. Mohapatra J, Mishra DK, Kamilla SK, Medicherla VRR, Phase DM, Berma V, Singh SK (2011) Phys Status Solidi B 248:1352–1359

    Article  CAS  Google Scholar 

  9. Venkataiah G, Huang MRS, Su HL, Liu CP, Huang JC (2010) J Phys Chem C 114:16191–16196

    Article  CAS  Google Scholar 

  10. Li BB, Xiu XQ, Zhang R, Tao ZK, Chen L, Xie Z, Zheng YD, He B (2006) Chin Phys Lett 23:907–910

    Article  Google Scholar 

  11. Mino L, Gianolio D, Bardelli F, Prestipino C, Kumar ES, Bellarmine F, Ramanjaneyulu M, Lamberti C, Rao MSR (2013) J Phys Condens Matter 25:385402

    Article  Google Scholar 

  12. Kuzmin A, Chaboy J (2014) IUCrJ 1:571–589

    Article  CAS  Google Scholar 

  13. Jiansirisomboon S, Songsiri K, Watcharapasorn A, Tunkasiri (2006) Curr Appl Phys 6:299–302

    Article  Google Scholar 

  14. Gleskova H, Cheng IC, Wagner S, Sturm JC, Suo Z (2006) Sol Energy 80:687–693

    Article  CAS  Google Scholar 

  15. Loh KJ, Chang DJ (2011) Mater Sci 46:228–237

    Article  CAS  Google Scholar 

  16. Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) Appl Phys Lett 76:3804–3806

    Article  CAS  Google Scholar 

  17. Huang C, Zhang Q (2004) Adv Funct Mater 14:501–506

    Article  CAS  Google Scholar 

  18. Li JY, Huang C, Zhang QM (2004) Appl Phys Lett 84:3124–3126

    Article  CAS  Google Scholar 

  19. Dang ZM, Shen Y, Nan CW (2002) Appl Phys Lett 81:4814–4816

    Article  CAS  Google Scholar 

  20. Dang ZM, Lin YH, Nan CW (2003) Adv Mater 15:1625–1629

    Article  CAS  Google Scholar 

  21. Shen Y, Nan CW, Li M (2004) Chem Phys Lett 396:420–423

    Article  CAS  Google Scholar 

  22. Slama J, Dosoudil R, Vicern R, Giruskova A, Olah V, Hudec I, Usak E (2003) J Magn Magn Mater 254–255:195–197

    Article  Google Scholar 

  23. Lebourgeois R, Berenguer S, Ramiarinjaona C, Waeckerle T (2003) J Magn Magn Mater 254–255:191–194

    Article  Google Scholar 

  24. Paterson JH, Devine R, Phelps ADR (1999) J Magn Magn Mater 196–197:394–396

    Article  Google Scholar 

  25. Tsutaoka T (2003) J Appl Phys 93:2789–2796

    Article  CAS  Google Scholar 

  26. Trofimova NN, Zubavichus YV, Titova OI, Karpyuk EA, Ivanov VA, Pomogailo AD, Slovokhotov YL (2013) Bulletin of the Russian Academy of Sciences. Physics 77:1127–1130

    CAS  Google Scholar 

  27. Bhunia R, Yadav AK, Jha SN, Bhattacharyya D, Hussain S, Bhar R, Pal AK (2015) Polymer 78:1–12

    Article  CAS  Google Scholar 

  28. Bhunia R, Ghosh D, Ghosh B, Hussain S, Bhar R, Pal AK (2015) Polym Int 64:924–934

    Article  CAS  Google Scholar 

  29. Poswal AK, Agrawal A, Yadav AK, Nayak C, Basu S, Kane SR, Garg CK, Bhattachryya D, Jha SN, Sahoo NK (2014) AIP Conf Proc 1591:649–651

    Article  CAS  Google Scholar 

  30. Basu S, Nayak C, Yadav AK, Agrawal A, Poswal AK, Bhattacharyya D, Jha SN, Sahoo NK (2014) J Phys Conf Ser 493:012032

    Article  Google Scholar 

  31. Liu Y, Liu H, Chen Z, Kadasala N, Mao C, Wang Y, Zhang Y, Liu H, Liu Y, Yang J, Yan Y (2014) J Alloy Compd 604:281–285

    Article  CAS  Google Scholar 

  32. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden Prairie

  33. Mai NT, Thuy TT, Mott DM, Maenosono S (2013) Cryst Eng Comm 15:6606–6610

    Article  CAS  Google Scholar 

  34. Droubay TC, Keavney DJ, Kaspar TC, Heald SM, Wang CM, Johnson CA, Whitaker KM, Gamelin DR, Chambers SA (2009) Phys Rev B 79:155203

    Article  Google Scholar 

  35. Yu GH, Zeng LR, Zhu FW, Chai CL, Lai WY (2001) J Appl Phys 90:4039–4043

    Article  CAS  Google Scholar 

  36. Li BB, Xiu XQ, Zhang R, Tao ZK, Chen L, Xie ZL, Zheng YD, Xie Z (2006) Mater Sci Semicond Process 9:141–145

    Article  CAS  Google Scholar 

  37. Konigsberger DC, Prince R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. New York, Wiley

    Google Scholar 

  38. Newville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (1995) Phys B Condens Matter 208:154–156

    Article  Google Scholar 

  39. Kisi EH, Elcombe MM (1989) Acta Cryst C 45:1867–1870

    Article  Google Scholar 

  40. Jeong ES, Yu HJ, Han SW, An SJ, Yoo J, Kim YJ, Yi GC (2008) J Korean Phys Soc 53:461–465

    CAS  Google Scholar 

  41. Basu S, Inamdar DY, Mahamuni S, Chakrabarti A, Kamal C, Kumar GR, Jha SN, Bhattacharyya D (2014) J Phys Chem C 118:9154–9164

    Article  CAS  Google Scholar 

  42. Wu Z, Zhou Y, Zhang X, Wei S, Chen D (2004) Appl Phys Lett 84:4442–4444

    Article  CAS  Google Scholar 

  43. Roe AL, Schneider DJ, Mayer RJ, Pyrz JW, Jr LQ (1984) J Am Chem Sot 106:1676–1681

    Article  CAS  Google Scholar 

  44. Lu JJ, Lin TC, Tsai SY, Mo TS, Gan KJ (2011) J Magn Magn Mater 323:829–832

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Board of Research in Nuclear Sciences (BRNS) and UGC-DAE-CSR consortium, Government of India, for the partial financial assistance to carry out this research program. RD wishes to acknowledge with thanks the financial help for supporting his fellowship through DST-INSPIRE fellowship program of the Department of Science and Technology, Government of India, while RB wishes to thank the Department of Science and Technology, Government of India, for supporting his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Dey, R., Bhunia, R. et al. Local structure studies of Ni doped ZnO/PVDF composite free-standing flexible thin films using XPS and EXAFS studies. J Polym Res 23, 265 (2016). https://doi.org/10.1007/s10965-016-1162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1162-7

Keywords

Navigation