Skip to main content
Log in

Polyurethane/polyhedral oligomeric silsesquioxane shape memory nanocomposites with low trigger temperature and quick response

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ester-based polyurethane (PU) was found to have excellent shape memory properties with low trigger temperature. Polyhedral oligomeric silsesquioxanes (POSS) have drawn considerable interest due to their hybrid organic–inorganic structures consisting of a silica cage surrounded by eight organic groups. Incorporation of functional POSS in polymers normally improves the mechanical properties of polymer matrix. For the purpose of obtaining shape memory materials with low trigger temperature and quick response, octa(3-hydroxypropyl) polyhedral oligomeric silsesquioxane (POSS-(OH)8) was incorporated into polyurethane by solution casting. The chemical structures and microstructures were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD) and field emission scanning electron microscope (FESEM). The thermal properties and dynamic mechanical properties were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The mechanical properties were also evaluated. Shape memory properties were characterized by cyclic thermal mechanical tests and physical shape recovery tests. The results show that the nanocomposites with low POSS-(OH)8 loading content (1 and 3 wt.%) possess higher breaking strength and elastic modulus, resulting in higher shape fixity, recovery ratios and faster recovery. The nanocomposites might have potential applications for controlling tags or proof marks in the area of low temperature storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao J, Chen M, Wang XY, Zhao XD, Wang ZW, Dang ZM et al (2013) ACS Appl Mater Interfaces 5(12):5550–5556

    Article  CAS  Google Scholar 

  2. Wei ZG, Sandstrom R, Miyazaki S (1998) J Mater Sci 33(15):3743–3762

    Article  CAS  Google Scholar 

  3. Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K (2008) Adv Funct Mater 18(16):2428–2435

    Article  CAS  Google Scholar 

  4. Cho JW, Jung YC, Chun BC, Chung YC (2004) J Appl Polym Sci 92(5):2812–2816

    Article  CAS  Google Scholar 

  5. Jin Z, Pramoda KP, Xu G, Goh SH (2001) Chem Phys Lett 337(1–3):43–47

    Article  CAS  Google Scholar 

  6. Filion TM, Xu JW, Prasad ML, Song J (2011) Biomaterials 32(4):985–991

    Article  CAS  Google Scholar 

  7. Ahmad M, Luo JK, Xu B, Purnawali H, King PJ, Chalker PR (2011) Macromol Chem Phys 212(6):592–602

    Article  CAS  Google Scholar 

  8. Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2005) Opt Express 13(20):8204–8213

    Article  Google Scholar 

  9. Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS (2002) Lasers Surgery Med 30(1):1–11

    Article  Google Scholar 

  10. Biju R, Nair CPR (2013) J Polym Res 20(2):82

    Article  Google Scholar 

  11. Lendlein A, Kelch S (2002) Angew Chem Int Ed 41(12):2034–2057

    Article  CAS  Google Scholar 

  12. Lee HF, Yu HH (2011) Soft Matter 7(8):3801–3807

    Article  CAS  Google Scholar 

  13. Cho JW, Kim JW, Jung YC, Goo NS (2005) Macromol Rapid Commun 26(5):412–416

    Article  CAS  Google Scholar 

  14. Gu SY, Yan BB, Liu LL, Ren J (2013) Eur Polym J 49(12):3867–3877

    Article  CAS  Google Scholar 

  15. Haberl JM, Sanchez-Ferrer A, Mihut AM, Dietsch H, Hirt AM, Mezzenga R (2013) Adv Mater 25(120):1787–1791

    Article  CAS  Google Scholar 

  16. Puig J, Hoppe CE, Fasce LA, Perez CJ, Pineiro-Redondo Y, BanobreLopez M (2012) J Phys Chem C 116(24):13421–13428

    Article  CAS  Google Scholar 

  17. Yu XJ, Zhou SB, Zheng XT, Guo T, Xiao Y, Song BT (2009) Nanotechnology 20(23):23570215

    Article  Google Scholar 

  18. Zhang YM, Wang QH, Wang C, Wang TM (2011) J Mater Chem 21(25):9073–9078

    Article  CAS  Google Scholar 

  19. Yan BB, Gu SY, Zhang YH (2013) Eur Polym J 49(2):366–378

    Article  CAS  Google Scholar 

  20. Bae CY, Park JH, Kim EY, Kang YS, Kim BK (2011) J Mater Chem 21(30):11288–11295

    Article  CAS  Google Scholar 

  21. Wang YK, Zhu GM, Xie JQ, Men QN, Liu TT, Ren F (2014) J Polym Res 21(8):515

    Article  Google Scholar 

  22. Xu B, Huang WM, Pei YT, Chen ZG, Kraft A, Reuben R (2009) Eur Polym J 45(7):1904–1911

    Article  CAS  Google Scholar 

  23. Yang D, Gao DY, Zeng C, Jiang JS, Xie MR (2011) React Funct Polym 71(11):1096–1101

    Article  CAS  Google Scholar 

  24. Mya KY, Gose HB, Pretsch T, Bothe M, He CB (2011) J Mater Chem 21(13):4827–4836

    Article  CAS  Google Scholar 

  25. Xu JW, Song J (2010) PNAS 107(17):7652–7657

    Article  CAS  Google Scholar 

  26. Lee KM, Knight PT, Chung T, Mather PT (2008) Macromolecules 41(13):4730–4738

    Article  CAS  Google Scholar 

  27. Demirel MH, Koytepe S, Gultek A, Seckin T (2014) J Polym Res 21(2):345

    Article  Google Scholar 

  28. Hou GX, Gao JG, Tian C (2013) J Polym Res 20(8):221

    Article  Google Scholar 

  29. Mya KY, Wang YX, Shen L, Xu JW, Wu YL, Lu XH (2009) J Polym Sci Part A: Polym Chem 47(18):4602–4616

    Article  CAS  Google Scholar 

  30. Dittmar U, Hendan JB, Floerke U, Marsmann HC (1995) J Organomet Chem 489(1–2):185–194

    Article  CAS  Google Scholar 

  31. Liu YH, Yang XT, Zhang WA, Zheng SX (2006) Polymer 47(19):6814–6825

    Article  CAS  Google Scholar 

  32. Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Chem Mater 20(4):1548–1554

    Article  CAS  Google Scholar 

  33. Raja M, Ryu SH, Shanmugharaj AM (2013) Eur Polym J 49(11):3492–3500

    Article  CAS  Google Scholar 

  34. Lee KS, Chang YW (2013) Polym Int 62(1):64–70

    Article  CAS  Google Scholar 

  35. Amarjargal A, Tijing LD, Shon HK, Park CH, Kim CS (2014) Appl Surf Sci 308:396–401

    Article  CAS  Google Scholar 

  36. Madhavan K, Gnanasekaran D, Reddy BSR (2011) J Polym Res 18(6):1851–1861

    Article  CAS  Google Scholar 

  37. Waddon AJ, Coughlin EB (2003) Chem Mater 15(24):4555–4561

    Article  CAS  Google Scholar 

  38. Bianchi O, Martins JN, Luvison C, Echeverrigaray SG, Castel CD, Oliveira RVB (2014) J Non-Cryst Solids 394:29–35

    Article  Google Scholar 

  39. Zhang X, Lu X, Wang Z, Wang J, Sun Z (2013) J Biomater Sci Polym Ed 24(9):1057–1070

    Article  CAS  Google Scholar 

  40. Zhang YM, Wang C, Pei XQ, Wang QH, Wang TM (2010) J Mater Chem 20(44):9976–9981

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the national key technology R&D program (Grant No. 2012BAI17B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ying Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, SY., Jin, SP. & Liu, LL. Polyurethane/polyhedral oligomeric silsesquioxane shape memory nanocomposites with low trigger temperature and quick response. J Polym Res 22, 142 (2015). https://doi.org/10.1007/s10965-015-0779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0779-2

Keywords

Navigation