Skip to main content
Log in

Electroactive polymers for the detection of morphine

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The interaction between morphine (MO), a very potent analgesic psychoactive drug, and five electroactive polymers, poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3-methylthiophene) (P3MT), polypyrrole (PPy), poly(N-methylpyrrole (PNMPy) and poly[N-(2-cyanoethyl)pyrrole] (PNCPy), has been examined using theoretical calculations on model complexes and voltammetric measures considering different pHs and incubation times. Quantum mechanical calculations in model polymers predict that the strength of the binding between the different polymers and morphine increases as follows: PEDOT < PNMPy < Py < < P3MT ≈ PNCPy. The most relevant characteristic of P3MT is its ability to interact with morphine exclusively through non-directional interactions. On the other hand, the variations of the electroactivity and the anodic current at the reversal potential evidence that the voltammetric response towards the presence of MO is considerably higher for P3MT and PNCPy than that for the other polymers at both acid (P3MT > PNMPy) and neutral (P3MT ≈ PNCPy) pHs. Energy decomposition analyses of the interaction of MO with different model polymers indicate that the stronger affinity of MO for P3MT and PNCPy as compared to PEDOT, PNMPy, and PPy is due to more favorable orbital interactions. These more stabilizing orbital interactions are the result of the larger charge transfer from MO to P3MT and PNCPy model polymers that takes place because of the higher stability of the single occupied molecular orbital (SOMO) of these model polymers. Therefore, to design polymers with a large capacity to detect MO we suggest looking at polymers with high electron affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cosnier S (2005) Electroanal 17:1701–1715

    Article  CAS  Google Scholar 

  2. Adhikari B, Majumdar S (2004) Prog Polym Sci 29:699–766

    Article  CAS  Google Scholar 

  3. Malhotra BD, Chaubey A, Singh SP (2006) Anal Chim Acta 578:59–74

    Article  CAS  Google Scholar 

  4. Terry LA, White SF, Tigwell LJ, Agr J (2005) Food Chem 53:1309–1316

    Article  CAS  Google Scholar 

  5. Drummond TG, Hill MG, Barton JK (2003) Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  6. Marsella MJ, Carroll PJ, Swager TM (1995) J Am Chem Soc 117:9832–9841

    Article  CAS  Google Scholar 

  7. Torsi L, Pezzuto M, Siciliano P, Rella R, Sabbatini L, Valli L, Zambonin PG (1998) Sensor Actuat B-Chem 48:362–367

    Article  CAS  Google Scholar 

  8. Ogura K, Saino T, Nakayama M, Shiigi H (1997) J Mater Chem 7:2363–2366

    Article  CAS  Google Scholar 

  9. Marsella MJ, Swager TM (1993) J Am Chem Soc 115:12214–12215

    Article  CAS  Google Scholar 

  10. Bauerle P, Scheib S (1993) Adv Mater 5:848–853

    Article  Google Scholar 

  11. Jousselme B, Blanchard P, Levillain E, Delaunay J, Allain M, Richomme P, Rondeau D, Gallego-Planas N, Roncali J (2003) J Am Chem Soc 125:1363–1370

    Article  CAS  Google Scholar 

  12. Casanovas J, Preat J, Zanuy D, Aleman C (2009) Chem Eur J 15:4676–4684

    Article  CAS  Google Scholar 

  13. Gaylord BS, Heeger AJ, Bazan GC (2002) Proc Natl Acad Sci U S A 99:10954–10957

    Article  CAS  Google Scholar 

  14. Ho HA, Boissinot M, Bergeron MG, Corbeil G, Dore K, Boudreau D, Leclerc M (2002) Angew Chem Int Edit 41:1548–1551

    Article  CAS  Google Scholar 

  15. Azioune A, Chehimi MM, Miksa B, Basinska T, Slomkowski S (2002) Langmuir 18:1150–1156

    Article  CAS  Google Scholar 

  16. Wallace GG, Kane-Maguire LAP (2002) Adv Mater 14:953−+

    Article  Google Scholar 

  17. Marti M, Fabregat G, Estrany F, Aleman C, Armelin E (2010) J Mater Chem 20:10652–10660

    Article  CAS  Google Scholar 

  18. Teixeira-Dias B, Zanuy D, Poater J, Sola M, Estrany F, del Valle LJ, Aleman C (2011) Soft Matter 7:9922–9932

    Article  CAS  Google Scholar 

  19. Teixeira-Dias B, del Valle LJ, Estrany F, Armelin E, Oliver R, Aleman C (2008) Eur Polym J 44:3700–3707

    Article  CAS  Google Scholar 

  20. De Vivo M (2011) Front Biosci-Landmrk 16:1619–1633

    Article  Google Scholar 

  21. Menikarachchi LC, Gascon JA (2010) Curr Top Med Chem 10:46–54

    Article  CAS  Google Scholar 

  22. Ceron-Carrasco JP, Jacquemin D, Graton J, Thany S, Le Questel JY, Phys J (2013) Chem B 117:3944–3953

    Article  CAS  Google Scholar 

  23. Lee JG, Sagui C, Roland C, Phys J (2005) Chem B 109:20588–20596

    Article  CAS  Google Scholar 

  24. Zanuy D, Preat J, Perpete EA, Aleman C, Phys J (2012) Chem B 116:4575–4583

    Article  CAS  Google Scholar 

  25. Fabregat G, Cordova-Mateo E, Armelin E, Bertran O, Aleman C, Phys J (2011) Chem C 115:14933–14941

    CAS  Google Scholar 

  26. Aleman C, Teixeira-Dias B, Zanuy D, Estrany F, Armelin E, del Valle LJ (2009) Polymer 50:1965–1974

    Article  CAS  Google Scholar 

  27. Zanuy D, Aleman C, Phys J (2008) Chem B 112:3222–3230

    Article  CAS  Google Scholar 

  28. Aradilla D, Estrany F, Aleman C (2013) RSC Adv 3:20545–20558

    Article  CAS  Google Scholar 

  29. Chari G, Gulati A, Bhat R, Tebbett IR (1991) J Chromatogr-Biomed 571:263–270

    Article  CAS  Google Scholar 

  30. Wallace JE, Harris SC, Peek MW (1980) Anal Chem 52:1328–1330

    Article  CAS  Google Scholar 

  31. Liaw WJ, Ho ST, Wang JJ, Hu OYP, Li JH (1998) J Chromatogr B 714:237–245

    Article  CAS  Google Scholar 

  32. Ho KC, Yeh WM, Tung TS, Liao JY (2005) Anal Chim Acta 542:90–96

    Article  CAS  Google Scholar 

  33. Weng CH, Yeh WM, Ho KC, Lee GB (2007) Sensor Actuat. B-Chem 121:576–582

    CAS  Google Scholar 

  34. Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:481–494

    Article  CAS  Google Scholar 

  35. Pei QB, Zuccarello G, Ahlskog M, Inganas O (1994) Polymer 35:1347–1351

    Article  CAS  Google Scholar 

  36. Han DH, Kim JW, Park SM (2006) J Phys Chem B 110:14874–14880

    Article  CAS  Google Scholar 

  37. Aasmundtveit KE, Samuelsen EJ, Inganas O, Pettersson LAA, Johansson T, Ferrer S (2000) Synth Met 113:93–97

    Article  CAS  Google Scholar 

  38. del Valle LJ, Estrany F, Armelin E, Oliver R, Aleman C (2008) Macromol Biosci 8:1144–1151

    Article  Google Scholar 

  39. Atta NF, Galal A, Ahmed RA (2011) Electroanal 23:737–746

    CAS  Google Scholar 

  40. Zanuy D, Teixeira-Dias B, del Valle LJ, Poater J, Sola M, Aleman C (2013) RSC Adv 3:2639–2649

    Article  CAS  Google Scholar 

  41. Rozlosnik N (2009) Anal Bioanal Chem 395:637–645

    Article  CAS  Google Scholar 

  42. Teixeira-Dias B, Aleman C, Estrany F, Azambuja DS, Armelin E (2011) Electrochim Acta 56:5836–5843

    Article  CAS  Google Scholar 

  43. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Gaussian Inc. Wallingford CT, 2009

  44. Gylbert L (1973) Acta Crystallogr Sect B 29:1630–1635

    Article  CAS  Google Scholar 

  45. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  46. Petersson GA, Allaham MA (1991) J Chem Phys 94:6081–6090

    Article  CAS  Google Scholar 

  47. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  48. Moller C, Plesset MS (1934) Phys Rev 46:0618–0622

    Article  CAS  Google Scholar 

  49. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  50. Morokuma K (1977) Acc Chem Res 10:294–300

    Article  CAS  Google Scholar 

  51. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  52. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  53. Ziegler T, Rauk A (1979) Inorg Chem 18:1755–1759

    Article  CAS  Google Scholar 

  54. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  55. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391–403

    CAS  Google Scholar 

  56. Snijders JG, Vernooijs P, Baerends EJ (1981) At Data Nucl Data 26:483–509

    Article  CAS  Google Scholar 

  57. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  59. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  60. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  61. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  62. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  63. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  64. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  65. Ocampo C, Armelin E, Estrany F, del Valle LJ, Oliver R, Sepulcre F, Aleman C (2007) Macromol Mater Eng 292:85–94

    Article  CAS  Google Scholar 

  66. Aradilla D, Azambuja D, Estrany F, Casas MT, Ferreira CA, Aleman C (2012) J Mater Chem 22:13110–13122

    Article  CAS  Google Scholar 

  67. Aradilla D, Estrany F, Azambuja DS, Casas MT, Puiggali J, Ferreira CA, Aleman C (2010) Eur Polym J 46:977–983

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by MICINN and FEDER funds (project numbers MAT2012-34498, CTQ2011-23156/BQU and CTQ2011-25086/BQU), by the DIUE of the Generalitat de Catalunya (contracts numbers 2009SGR925, 2009SGR528, 2009SGR637 and XRQTC) and Cátedra Applus (UPC). E.C.-M. and B. T. D. are thanked to the MICINN by their FPI grants. Support for the research of C.A. and M. S. was received through the prize “ICREA Academia” for excellence in research funded by the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alemán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova-Mateo, E., Poater, J., Teixeira-Dias, B. et al. Electroactive polymers for the detection of morphine. J Polym Res 21, 565 (2014). https://doi.org/10.1007/s10965-014-0565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0565-6

Keywords

Navigation