Skip to main content
Log in

Solid and melt-state 1H NMR studies of relaxation processes in isotactic polypropylenes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Relaxation processes in metallocene and Ziegler–Natta isotactic polypropylenes were studied using 1H MAS NMR spectroscopy. 1H MAS NMR spectra and laboratory-frame spin-lattice relaxation times T 1(1H) were measured within the temperature range 30–190 °C, which covers the glass transition relaxation and melting processes of both polymers. Splitting of the peak related to protons in amorphous regions of the studied samples into three sharp peaks at elevated temperatures made it possible to determine the spin-lattice relaxation times T 1(1H) for particular iPP proton groups. The melt-state NMR spectra of ZN-iPP display three sharp peaks with three additional weak peaks positioned on the less shielded side. Entanglements of ZN-iPP chains are suggested as a possible source of these additional peaks. The spectra of m-iPP indicate substantially fewer entanglements due to its lower molecular weight compared with that of ZN-iPP. The temperature dependences of the relaxation times T 1(1H) relating to specific groups of ZN-iPP were shown to reach minima associated with the motions of amorphous chain segments (glass transition relaxation), which are very close to the melting temperature and minima associated with the melting process. Each of the T 1(1H) temperature dependences for m-iPP shows only one minimum associated with the melting process. When the particular relaxation times T 1, min relating to the minima that occur above the melting temperatures were considered, and these relaxation times were compared for the same proton groups in different samples, significant differences in the relaxation times were observed between samples. Polymer chain motion was more restricted in melted ZN-iPP than in m-iPP, as inferred from the T 1, min values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laws DD, Bitter HML, Jerschow A (2002) Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed 41:3096–3129. doi:10.1002/1521-3773(20020902)41:17<3096::AID-ANIE3096>3.0.CO;2-X

    Google Scholar 

  2. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26:443–533. doi:10.1016/S0079-6700(00)00046-0

    Article  CAS  Google Scholar 

  3. Geppi M, Harris RK, Kenwright AM, Say BJ (1998) A method for analysing proton NMR relaxation data from motionally heterogeneous polymer systems. Solid State Nucl Magn Reson 12:15–20. doi:10.1016/S0926-2040(98)00046-0

    Article  CAS  Google Scholar 

  4. Kienzle U, Noack F, von Schütz J (1970) Kernmagnetische relaxation in festem polypropylen. Koll Z Z Polym 296:129–137. doi:10.1007/BF02086626

    Article  Google Scholar 

  5. McBrierty VJ, Douglass DC, Falcone DR (1972) Nuclear magnetic relaxation in polypropylene. J Chem Soc Faraday Trans II 68:1051–1059. doi:10.1039/F29726801051

    Article  CAS  Google Scholar 

  6. Olčák D, Murín J, Uhrin J, Rákoš M, Schenk W (1985) N.M.R. studies of molecular motion in modified polypropylene. Polymer 26:1455–1458. doi:10.1016/0032-3861(85)90076-X

    Article  Google Scholar 

  7. Hatanaka T, Mori H, Terano M (1999) Study of thermo-oxidative degradation of molten state polypropylenes with a variety of tacticities. Polym Degrad Stab 64:313–319. doi:10.1016/S0141-3910(98)00207-9

    Article  CAS  Google Scholar 

  8. Vyas PB, Kaur S, Patil HR, Gupta VK (2011) Synthesis of polypropylene with varied microstructure and molecular weights characteristics using supported titanium catalyst system. J Polym Res 18:235–239. doi:10.1007/s10965-010-9411-7

    Article  CAS  Google Scholar 

  9. Gómez-Elvira JM, Tiemblo P, Elvira M, Matisova-Rychla L, Rychly J (2004) Relaxations and thermal stability of low molecular weight predominantly isotactic metallocene and Ziegler–Natta polypropylene. Polym Degrad Stab 85:873–882. doi:10.1016/j.polymdegradstab.2004.04.003

    Google Scholar 

  10. Arranz-Andrés J, Peña B, Benavente R, Pérez E, Cerrada ML (2007) Influence of isotacticity and molecular weight on the properties of metallocenic isotactic polypropylene. Eur Polym J 43:2357–2370. doi:10.1016/j.eurpolymj.2007.03.034

    Article  Google Scholar 

  11. Hoyos M, Tiemblo P, Gómez-Elvira JM (2009) Influence of microstructure and semi-crystalline morphology on the β and γ mechanical relaxations of the metallocene isotactic polypropylene. Eur Polym J 45:1322–1327. doi:10.1016/j.eurpolymj.2009.01.018

    Article  CAS  Google Scholar 

  12. Hoyos M, Tiemblo P, Gómez-Elvira JM (2007) The role of microstructure, molar mass and morphology on local relaxations in isotactic polypropylene. The α relaxation. Polymer 48:183–194. doi:10.1016/j.polymer.2006.11.034

    Article  CAS  Google Scholar 

  13. Fričová O, Uhrínová M, Hronský V, Kovaľaková M, Olčák D, Chodák I, Spěváček J (2012) High-resolution solid-state NMR study of isotactic polypropylenes. Express Polym Lett 6:204–212. doi:10.3144/expresspolymlett.2012.23

    Article  Google Scholar 

  14. Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M (2013) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Polym Res 20:70–80. doi:10.1007/s10965-012-0070-8

    Google Scholar 

  15. Bielecki A, Burum DP (1995) Temperature dependence of 207Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS. J Magn Reson Ser A 116:215–220. doi:10.1006/jmra.1995.0010

    Article  CAS  Google Scholar 

  16. Asano A, Hori S, Kitamura M, Nakazawa CT, Kurotsu T (2012) Influence of magic angle spinning on T1 H of SBR studied by solid state 1H NMR. Polym J 44:706–712. doi:10.1038/pj.2012.10

    Article  CAS  Google Scholar 

  17. Duer MJ (2004) Introduction to solid-state NMR spectroscopy. Blackwell, Oxford

  18. Kitamaru R (1990) Nuclear magnetic resonance: principles and theory. Elsevier, Amsterdam

  19. Iwata K (2002) Role of entanglement in crystalline polymers 1. Basic theory. Polymer 43:6609–6626. doi:10.1016/S0032-3861(02)00524-4

    Article  CAS  Google Scholar 

  20. Olčák D, Ševčovič L, Mucha Ľ, Ďurčová O (1996) NMR study of β relaxation in modified and blended isotactic polypropylene. Polym J 28:232–237. doi:10.1295/polymj.28.232

    Article  Google Scholar 

  21. Ševčovič L, Mucha Ľ (2009) Study of stretched polypropylene fibres by H-1 pulsed and CW NMR spectroscopy. Solid State Nucl Magn Reson 36:151–157. doi:10.1016/j.ssnmr.2009.09.001

    Article  Google Scholar 

  22. Tanaka H, Saito K (1988) Effects of uniaxial stretching and shrinkage on proton spin-lattice and spin-spin relaxation times of isotactic polypropylene. Colloid Polym Sci 266:1–5. doi:10.1007/BF01451525

    Article  CAS  Google Scholar 

  23. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712. doi:10.1103/PhysRev.73.679

    Article  CAS  Google Scholar 

  24. Hennel JW, Klinowski J (1993) Fundamentals of nuclear magnetic resonance. Longman, Harlow

  25. Van Vleck JH (1948) The dipolar broadening of magnetic resonance lines in crystals. Phys Rev 74:1168–1183. doi:10.1103/PhysRev.74.1168

    Article  Google Scholar 

  26. Schenk W, Ebert A (1980) Untersuchungen zur Molekülbewegung in Polyvinylchlorid mit kernmagnetischen Impulsverfahren. Acta Polym 31:41–46. doi:10.1002/actp.1980.010310108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was developed as part of the project named “Centre of Excellence for Integrated Research and Exploitation of Advanced Materials and Technologies in Automotive Electronics,” ITMS 26220120055.

One of the authors (IC) gratefully received financial support of this research from the Slovak Research and Development Agency (grant APVV-0226-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oľga Fričová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olčák, D., Hronský, V., Fričová, O. et al. Solid and melt-state 1H NMR studies of relaxation processes in isotactic polypropylenes. J Polym Res 20, 117 (2013). https://doi.org/10.1007/s10965-013-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0117-5

Keywords

Navigation