Skip to main content
Log in

Thermal and mechanical behaviour of self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two series of self curable polyurethanes were synthesized using an aliphatic diisocyanate (isophorone diisocyanate), an anionic diol (2-bis(hydroxymethyl) propionic acid) and two different soft segments poly(1,4-butylene adipate) end capped diol (semicrystalline polyester) and poly (propylene glycol) end capped diol (amorphous polyether). In both cases the polyurethanes were end-capped with (3-aminopropyl)triethoxysilane to impart the films the ability to crosslink at room temperature. The thermal and mechanical properties of the cured films can be tailored with the alkoxysilane concentration. Thus, as the alkoxysilane content increases, the resulting systems present a higher degree of phase separation, according to both DSC and DMTA results. In addition, TGA results confirm that their thermal stability also increases and finally, the modulus increases and the strain decreases as a function of the crosslinking degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  2. Nanda AK, Wicks DA (2006) The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process. Polymer 47:1805–1811

    Article  CAS  Google Scholar 

  3. Hepburn C (1993) Polyurethane elastomers, 2nd edn. Elsevier, London

    Google Scholar 

  4. Madhavan K, Gnanasekaran D, Reddy B (2011) Poly(dimethylsiloxane-urethane) membranes: effect of linear siloxane chain and caged silsesquioxane on gas transport properties. J Polym Res 18:1851–1861

    Article  CAS  Google Scholar 

  5. Kim BK (1996) Aqueous polyurethane dispersions. Colloid Polym Sci 275:599–611

    Article  Google Scholar 

  6. Dieterich D (1981) Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties. Prog Org Coat 9:281–340

    Article  CAS  Google Scholar 

  7. Li CY, Chiu WY, Don TM (2005) Preparation of polyurethane dispersions by miniemulsion polymerization. J Polym Sci Part A Polym Chem 43:4870–4881

    Article  CAS  Google Scholar 

  8. Sardon H, Irusta L, Fernandez-Berridi MJ (2009) Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes: Comparison between zirconium and tin catalysts in the polymerization process. Prog Org Coat 66:291–295

    Article  CAS  Google Scholar 

  9. Subramani S, Lee JM, Lee JY, Kim JH (2007) Synthesis and properties of room temperature curable trimethoxysilane-terminated polyurethane and their dispersions. Polym Adv Technol 18:601–609

    Article  CAS  Google Scholar 

  10. Subramani S, Cheong IW, Kim JH (2004) Synthesis and characterizations of silylated polyurethane from methyl ethyl ketoxime-blocked polyurethane dispersion. Eur Polym J 40:2745–2755

    Article  CAS  Google Scholar 

  11. Wang S, Chen P, Hwang J, Yeh J, Huang C, Chen K (2012) Performance properties of self-curing aqueous-based PU system with tri-glycidyl phosphate curing agent. J Polym Res 19:1–10

    Google Scholar 

  12. Kim BK, Yang JS, Yoo SM, Lee JS (2003) Waterborne polyurethanes containing ionic groups in soft segment. Colloid Polym Sci 281:461–468

    Article  CAS  Google Scholar 

  13. Bao L, Lan Y, Zhang S (2006) Synthesis and properties of waterborne polyurethane dispersions with ions in the soft segments. J Polym Res 13:507–514

    Article  CAS  Google Scholar 

  14. Song C, Yuan Q, Wang D (2004) Effect of the content of urea groups on the particle size in water-borne polyurethane or polyurethane/polyacrylate dispersions. Colloid Polym Sci 282:642–645

    Article  CAS  Google Scholar 

  15. Sardon H, Irusta L, Fernández-Berridi MJ, Lansalot M, Bourgeat-Lami E (2010) Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Polymer 51:5051–5057

    Article  CAS  Google Scholar 

  16. Xiaojuan L, Xiaorui L, Lei W, Yiding S (2010) Synthesis and characterizations of waterborne polyurethane modified with 3-aminopropyltriethoxysilane. Polym Bull 65:45–57

    Article  Google Scholar 

  17. Yeh JM, Yao CT, Hsieh CF, Yang HC, Wu CP (2008) Preparation and properties of amino-terminated anionic waterborne-polyurethane–silica hybrid materials through a sol–gel process in the absence of an external catalyst. Eur Polym J 44:2777–2783

    Article  CAS  Google Scholar 

  18. Sardon H, Irusta L, Fernández-Berridi MJ, Luna J, Lansalot M, Bourgeat-Lami E (2011) Waterborne polyurethane dispersions obtained by the acetone process: a study of colloidal features. J Appl Polym Sci 120:2054–2062

    Article  CAS  Google Scholar 

  19. Barni A, Levi M (2003) Aqueous polyurethane dispersions: a comparative study of polymerization processes. J Appl Polym Sci 88:716–723

    Article  CAS  Google Scholar 

  20. Wang L, Shen Y, Lai X, Li Z, Liu M (2011) Synthesis and properties of crosslinked waterborne polyurethane. J Polym Res 18:469–476

    Article  CAS  Google Scholar 

  21. Xiaojuan L, Yiding S, Lei W (2011) Preparation and properties of self-crosslinkable polyurethane/silane hybrid emulsion. J Polym Res 18:2425–2433

    Article  Google Scholar 

  22. Camberlin Y, Pascault JP (1983) Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas. J Polym Sci Part A Polym Chem 21:415–423

    CAS  Google Scholar 

  23. Kwon J, Rahman M, Kim H (2006) Preparation and properties of crosslinkable waterborne polyurethanes containing aminoplast. Fibers Polym 7:95–104

    Article  CAS  Google Scholar 

  24. Kanapitsas A, Pissis P, Gomez-Ribelles JL, Monleon-Pradas M, Privalko EG, Privalko VP (1999) Molecular mobility and hydration properties of segmented polyurethanes with varying structure of soft and hard chain segments. J Appl Polym Sci 71:1209–1221

    Article  CAS  Google Scholar 

  25. Rekondo A, Irusta L, Fernandez-Berridi MJ (2010) Characterization of silanized poly(ether-urethane) hybrid systems using thermogravimetric analysis (TG). J Therm Anal Calorim 101:331–337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of the Basque Government (Etortek, iNanogune II project, and Ayudas a grupos de investigación del sistema Universitario vasco ITT444-10) for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Fernández-Berridi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sardon, H., Irusta, L., Santamaría, P. et al. Thermal and mechanical behaviour of self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). J Polym Res 19, 9956 (2012). https://doi.org/10.1007/s10965-012-9956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9956-8

Keywords

Navigation