Skip to main content
Log in

Chain conformation and intramolecular crosslinking of poly(dimethylaminoethyl methacrylate-co-methyl methacrylate-co-butyl methacrylate) in the presence of mono- or dicarboxylic acids: a dilute solution viscometry study

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, intramolecular crosslinking and changes in the chain conformation of a methacrylate terpolymer i.e., poly(dimethylaminoethyl methacrylate-co-methyl methacrylate-co-butyl methacrylate) was traced in dilute solutions as a function of mono- or dicarboxylic acids concentration. Acetic acid was examined as the monocarboxylic acid but dicarboxylic acids were selected as a homologous series including oxalic, succinic and adipic acid. The polymer was dissolved in a solvent mixture consisting of acetone, ethanol and 1-propanol in 60:33.43:6.57 weight percent ratios, respectively. Viscometric data were obtained by dilute solution viscometry using an Ubbelohde capillary viscometer. Chain conformation parameters were determined using two empirical models consisting of Rao and Heller equations. According to the results, tertiary amine functional groups on the terpolymer backbone was protonated due to the reducing pH values after adding acetic acid, which in turn caused an increment in intramolecular repulsive forces induced by electrostatic charges. These repulsive forces expand the polymer coil to helix. Intramolecular crosslinking was observed using dicarboxylic acids when polymer concentrations were lower than the critical overlap concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antoniou E, Alexandridis P (2010) Eur Polym J 46:324–335

    Article  CAS  Google Scholar 

  2. Antoniou E, Themistou E, Arkar B, Tsianou M, Alexandridis P (2010) Colloid Polym Sci 288:1301–1312

    Article  CAS  Google Scholar 

  3. Antoniou E, Buitrago CF, Tsianou M, Alexandridis P (2010) Carbohydr Polym 79:380–390

    Article  CAS  Google Scholar 

  4. Ramesh S, Bijan D, Prabir N, Chanchal D (2010) J Polymer Sci, Part B: Polymer Phys 48:1196–1202

    Article  Google Scholar 

  5. Oosava F (1971) Polyelectrolytes. Marcel Dekker, INC, New York

    Google Scholar 

  6. Liaw D, Huang C (1997) J Polym Res 4:57–63

    Article  CAS  Google Scholar 

  7. Popescu I, Airinei A, Suflet D, Popa M (2011) J Polym Res 18:2195–2203

    Article  CAS  Google Scholar 

  8. Chen W, Hsu C, Huang J, Tsai M, Chen R (2011) J Polym Res 18:1385–1395

    Article  CAS  Google Scholar 

  9. Amine H, Karima O, El Amine BM, Meghabar R, Belbachir M (2005) J Polym Res 12:367–371

    Article  CAS  Google Scholar 

  10. Kulicke WM, Clasen C (2003) Viscosimetry of polymers and polyelectrolytes. Springer, Hamburg

    Google Scholar 

  11. Liu Y, Fang L, Zheng H, Zhao L, Ge X, He Z (2007) Asian J Pharm Sci 2:106–113

    CAS  Google Scholar 

  12. Nichifor M, Stanciu MC, Ghimici L, Simionescu BC (2011) Carbohydr Polym 83:1887–1894

    Article  CAS  Google Scholar 

  13. Cilurzo F, Minghetti P, Casiraghi A, Montanari L (2000) J Appl Polym Sci 76:1662–1668

    Article  CAS  Google Scholar 

  14. Sannigrahi A, Arunbabu D, Sankar RM, Jana T (2007) Macromolecules 40:2844–2851

    Article  CAS  Google Scholar 

  15. Ghosh S, Sannigrahi A, Maity S, Jana T (2010) J Phys Chem B 114:3122–3132

    Article  CAS  Google Scholar 

  16. Heuer W (1954) Am Phys Soc 94:1426

    Google Scholar 

  17. Durand A (2007) Polym Eng Sci 47:481–488

    Article  CAS  Google Scholar 

  18. Vink H (1992) Polymer 33:3711–3716

    Article  CAS  Google Scholar 

  19. Durand A (2007) Eur Polymer J 43:1744–1753

    Article  CAS  Google Scholar 

  20. Dragan S, Mihai M, Ghimici L (2003) Eur Polymer J 39:1847–1854

    Article  CAS  Google Scholar 

  21. Racovita S, Vasiliu S, Neagu V (2010) Iran Polym J 19:333–341

    CAS  Google Scholar 

  22. Ghimici L, Bercea M (2009) Mater Plast 46:111–120

    Google Scholar 

  23. Wanchoo RK, Thakur A (2008) Chem Biochem Eng 22:15–24

    CAS  Google Scholar 

  24. Minghetti P, Cilurzo F, Casiraghi A, Montanari L (1999) Int J Pharm 190:91–101

    Article  CAS  Google Scholar 

  25. Ng WK, Tam KC, Jenkins RD (1999) Eur Polymer J 35:1245–1252

    Article  CAS  Google Scholar 

  26. Pertusatti J, Prado A (2007) J Colloid Interface Sci 314:484–489

    Article  CAS  Google Scholar 

  27. Skoog A, West W, Holler J (1992) Fundumentals of analytical chemistry. Saunders College

  28. EUDRAGIT E 100. http://eudragit.evonik.com

  29. Bordwell pKa Table (Acidity in DMSO) http://www.chem.wisc.edu/areas/reich/pkatable/

  30. pKa Values. http://research.chem.psu.edu/brpgroup/pKa_compilation.pdf

  31. Tsaih M, Chen R (1999) J Appl Polym Sci 73:2041–2050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Imani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babaie, M., Imani, M. & Azizi, H. Chain conformation and intramolecular crosslinking of poly(dimethylaminoethyl methacrylate-co-methyl methacrylate-co-butyl methacrylate) in the presence of mono- or dicarboxylic acids: a dilute solution viscometry study. J Polym Res 20, 35 (2013). https://doi.org/10.1007/s10965-012-0035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0035-y

Keywords

Navigation