Skip to main content
Log in

Synthesis of konjac glucomannan phthalate as a new biosorbent for copper ion removal

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Konjac glucomannan (KGM) was esterified with phthalic anhydride catalyzed using pyridine, resulting in a biomass-based copolymer (PKGM), a solid biosorbent which was used for copper ion removal in aqueous. The esterification degree of substitution (DS) for KGM is a key parameter for performance of PKGM in copper ion adsorption. The DS, number average molecular weight (Mn), molecular weight distribution (D) and radium of gyration (Rg) are able to be manipulated in pretreatment of KGM and preparation reaction such as by changing swelling time, varying catalyst dosage or temperature. The effect of DS on Cu2+ ion adsorption efficacy (E%) was investigated and found significantly relevant to DS, pH and absorbent dosage. Langmuir isotherm model and a pseudo-second-order rate model, respectively, were applied to understanding in Cu(II) ion adsorption mechanism on PKGM and the data fitting indicated that Cu(II) ion adsorption onto PKGMs is due to chemisorption where the kinetic investigation showed that the adsorption equilibrium was established sufficiently in 120 min. Most important, at slightly acidic the maximum sorption capacity is 16.99 mg/g which is higher than those of many natural sorbents such as grape stalks wastes (11.50 mg/g dry sorbent). At pH ≥ 10 one of the PKGMs enables more than 99 % copper ion removal at its initial concentration of 100 mgL. Hence, as a biosorbent, the PKGM has shown promising potential for removal of heavy metals in the aqueous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wei B, Yang L (2010) Microchem J 94:99–107

    Article  CAS  Google Scholar 

  2. Tyagi P, Buddhi D, Choudhary R, Sawhney RL (2000) Indian J Environ Prot 20:174–181

    CAS  Google Scholar 

  3. Badruzzaman M, Oppenheimer J, Adham S, Kumar M (2009) J Membr Sci 326:392–399

    Article  CAS  Google Scholar 

  4. Dianati-Tilaki RA, Mahvi AH, Shariat M, Nasseri S (2004) Iran J Public Health 33:43–52

    CAS  Google Scholar 

  5. Khedr MG (2009) Desalin Water Treat 2:342–350

    Article  CAS  Google Scholar 

  6. Maheshwari R, Singh U, Gupta N, Rani B, Chauhan AK (2010) Asian J Exp Biol Sci 1:235–242

    CAS  Google Scholar 

  7. Zhang C, Han B, Luo X, Lin X (2011) Method for manufacture of adsorption material based on modified konjac glucomannan for treatment of heavy metal wastewater. In: Faming Zhuanli Shenqing (Southwest University of Science and Technology, Peop. Rep. China). CN 201110028860, 8pp

  8. Basso MC, Cerrella EG, Cukierman AL (2002) Ind Eng Chem Res 41:3580–3585

    Article  CAS  Google Scholar 

  9. Grimm A, Zanzi R, Björnbom E, Cukierman AL (2008) Bioresour Technol 99:2559–2565

    Article  CAS  Google Scholar 

  10. Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Bioresour Technol 98:452–455

    Article  CAS  Google Scholar 

  11. Li Q, Chai L, Wang Q, Yang Z, Yan H, Wang Y (2010) Bioresour Technol 101:3796–3799

    Article  CAS  Google Scholar 

  12. Dizhbite T, Zakis G, Kizima A, Lazareva E, Rossinskaya G, Jurkjane V, Telysheva G, Viesturs U (1999) Bioresour Technol 67:221–228

    Article  Google Scholar 

  13. Acar FN, Eren Z (2006) J Hazard Mater 137:909–914

    Article  CAS  Google Scholar 

  14. Kumar U, Bandyopadhyay M (2006) J Hazard Mater 129:253–259

    Article  CAS  Google Scholar 

  15. Chen C-Y, Yang C-Y, Chen A-H (2011) J Environ Manag 92:796–802

    Article  CAS  Google Scholar 

  16. Niu C, Wu W, Wang Z, Li S, Wang J (2007) J Hazard Mater 141:209–214

    Article  CAS  Google Scholar 

  17. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Bioresour Technol 99:6709–6724

    Article  Google Scholar 

  18. Zheng Y, Hua S, Wang A (2010) Desalination 263:170–175

    Article  CAS  Google Scholar 

  19. Ratcliffe I, Williams PA, Viebke C, Meadows J (2005) Biomacromolecules 6:1977–1986

    Article  CAS  Google Scholar 

  20. Williams MAK, Foster TJ, Martin DR, Norton IT, Yoshimura M, Nishinari K (2000) Biomacromolecules 1:440–450

    Article  CAS  Google Scholar 

  21. Koroskenyi B, McCarthy SP (2001) Biomacromolecules 2:824–826

    Article  CAS  Google Scholar 

  22. Induri S, Sengupta S, Basu JK (2010) J Ind Eng Chem 16:467–473

    Article  CAS  Google Scholar 

  23. Grohmann K, Bothast RJ (1997) Process Biochem 32:405–415

    Article  CAS  Google Scholar 

  24. Noureddini H, Byun J (2010) Bioresour Technol 101:1060–1067

    Article  CAS  Google Scholar 

  25. Banks W, Lawther J (1994) Derivatization of wood in composites. In: Gilbert R (ed) Cellulosic polymers blends and composites. Hanser Gardner, New York, pp 115–155

    Google Scholar 

  26. Papadopoulos AN (2006) Eur J Wood Wood Prod 64:134–136

    Article  CAS  Google Scholar 

  27. Chen Z-G, Zong M-H, Li G-J (2006) Process Biochem 41:1514–1520

    Article  CAS  Google Scholar 

  28. Chi H, Xu K, Wu X, Chen Q, Xue D, Song C, Zhang W, Wang P (2008) Food Chem 106:923–928

    Article  CAS  Google Scholar 

  29. Liu F, Luo X, Lin X, Liang L, Chen Y (2009) J Hazard Mater 171:802–808

    Article  CAS  Google Scholar 

  30. Hsu P-K, Lin K-M, Chau C-F (2009) Food Chem 113:1015–1019

    Article  CAS  Google Scholar 

  31. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  32. McMurry J, Begley TP (eds) (2005) The organic chemistry of biological pathways. Roberts and Co Publishers, Englewood

    Google Scholar 

  33. Devaraj S, Jagdhane RC, Shashidhar MS (2009) Carbohydr Res 344:1159–1166

    Article  CAS  Google Scholar 

  34. Glinel K, Sauvage JP, Oulyadi H, Huguet J (2000) Carbohydr Res 328:343–354

    Article  CAS  Google Scholar 

  35. Kulicke W-M, Kull AH, Kull W, Thielking H, Engelhardt J, Pannek J-B (1996) Polymer 37:2723–2731

    Article  CAS  Google Scholar 

  36. Bassaid S, Chaib M, Bouguelia A, Trari M (2008) React Funct Polym 68:483–491

    Article  CAS  Google Scholar 

  37. Kato K, Matsuda K (1969) Agric Biol Chem 33:1446–1453

    Article  CAS  Google Scholar 

  38. Lu S, Gibb SW (2008) Bioresour Technol 99:1509–1517

    Article  CAS  Google Scholar 

  39. Ogawa K, Yui T, Mizuno T (1991) Agric Biol Chem 55:2105–2111

    Article  CAS  Google Scholar 

  40. Millane RP, Hendrixson TL (1994) Carbohydr Polym 25:245–251

    Article  CAS  Google Scholar 

  41. Yui T, Ogawa K, Sarko A (1992) Carbohydr Res 229:41–55

    Article  CAS  Google Scholar 

  42. Guo X, Zhang S, Shan X-Q (2008) J Hazard Mater 151:134–142

    Article  CAS  Google Scholar 

  43. Özer A, Pirinççi HB (2006) J Hazard Mater 137:849–855

    Article  Google Scholar 

  44. Liu Y (2008) Colloids Surf, A Physicochem Eng Asp 320:275–278

    Article  CAS  Google Scholar 

  45. Vilar VJP, Botelho CMS, Boaventura RAR (2008) Bioresour Technol 99:750–762

    Article  CAS  Google Scholar 

  46. Najim TS, Elais NJ, Dawood AA (2009) E-Journal Chem 6:161–168

    Article  CAS  Google Scholar 

  47. Patnaik P (2002) 268 Copper(I) iodide in Handbook of inorganic chemicals. McGraw-Hill Professional, p387

  48. Kohn R, Tihlarik K (1986) Collect Czechoslov Chem Commun 51:1160–1169

    Article  CAS  Google Scholar 

  49. Kowalik-Jankowska T, Rajewska A, Jankowska E, Grzonka Z (2006) Dalton Trans 5068–5076

  50. La Mendola D, Magri A, Vagliasindi LI, Hansson O, Bonomo RP, Rizzarelli E (2010) Dalton Trans 39:10678–10684

    Article  Google Scholar 

  51. Natali M, Aakeroey C, Desper J, Giordani S (2010) Dalton Trans 39:8269–8277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Doctoral Fund of Southwest University of Science and Technology (Contract No:10zx7104) and Opening Fund of Engineering Research Center of Biomass Materials of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China (Contract No:09zxbk01)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Han, B., Yao, X. et al. Synthesis of konjac glucomannan phthalate as a new biosorbent for copper ion removal. J Polym Res 20, 34 (2013). https://doi.org/10.1007/s10965-012-0034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0034-z

Keywords

Navigation