Skip to main content
Log in

Properties of poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) membranes prepared by alkali treatment

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An amphiphilic graft copolymer (PVDF-g-PNIPAAm) with poly(vinylidene fluoride) (PVDF) main chains and poly(N-isopropylacrylamide) (PNIPAAm) side chains was synthesized via radical copolymerization, and flat sheet membranes of this copolymer were prepared by the phase inversion method. The process of membrane formation was investigated by ultrasonic time-domain reflectometry (UTDR). The structures and properties of the membrane, including its surface chemical structure, pore morphology, and water permeability, were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and a water permeation experiment, respectively. The relationship between the process of membrane formation and the properties of the membrane was studied. The results showed that the membrane displayed temperature sensitivity. Treating the PVDF for a longer period with alkali caused more PNIPAAm to graft onto the main chains, which influenced not only the microporous structure and formation process of the membrane but also the temperature sensitivity of the performance of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2 a–d
Fig. 3 a–b
Fig. 4 a–d
Fig. 5

Similar content being viewed by others

References

  1. Roh DK, Ahn SH, Seo JA, Shul YG, Kim JH (2010) J Polymer Sci B Polymer Phys 48:1110–1117

    Article  CAS  Google Scholar 

  2. Klaikherd A, Nagamani C, Thayumanavan S (2009) J Am Chem Soc 131:4830–4838

    Article  CAS  Google Scholar 

  3. Wanderaa D, Wickramasingheb SR, Hussona SM (2010) J Am Chem Soc 357:6–35

    Google Scholar 

  4. Bittrich E, Kuntzsch M, Eichhorn KJ, Uhlmann P (2010) J Polymer Sci B Polymer Phys 48:1606–1615

    Article  CAS  Google Scholar 

  5. Iwata H, Matsuda T (1988) J Membr Sci 38:185–199

    Article  CAS  Google Scholar 

  6. Hirata I, Okazaki M, Iwata H (2004) Polymer 45:5569–5578

    Article  CAS  Google Scholar 

  7. Zhang J, Chu LY, Cheng CJ, Mi DF, Zhou MY, Ju XJ (2008) Polymer 49:2595–2603

    Article  CAS  Google Scholar 

  8. Cheng JG, Wang L, Huo J, Yu HJ, Yang Q, Deng LB (2008) J Polymer Sci B Polymer Phys 46:1529–1535

    Article  CAS  Google Scholar 

  9. Ying L, Kang ET, Neoh KG (2002) Langmuir 18:6416–6423

    Article  CAS  Google Scholar 

  10. Neoh JZ, Zhu LP, Zhu BK, Xu YY (2011) J Membr Sci 366:176–183

    Article  Google Scholar 

  11. Guo YF, Feng X, Chen L, Zhao YP, Bai JN (2010) J Appl Polym Sci 116:1005–1009

    CAS  Google Scholar 

  12. Wang WY, Chen L, Yu X (2006) J Appl Polym Sci 101:833–837

    Article  CAS  Google Scholar 

  13. Sanderson RD, Li JX, Hallbauer DK (2005) Environ Sci Technol 39:7299–7305

    Article  CAS  Google Scholar 

  14. Anim-Mensah AR, Franklin JE, Palsule AS, Salazar LA, Widenhouse CW, Mast DB, Mark JE, Krantz WB, Clarson SJ (2010) ACS Symp Ser 10:1021–1051

    Google Scholar 

  15. Li JX, Sanderson RD, Chai GY (2006) Sens Actuator B 114:182–191

    Article  Google Scholar 

  16. Yin J, Coutris N, Huang Y (2010) Langmuir 26:16991–16999

    Article  CAS  Google Scholar 

  17. Schacher F, Rudolph T, Wieberger F, Ulbricht M, Mller AHE (2009) ACS Appl Mater Interfac 1:1492–1503

    Article  CAS  Google Scholar 

  18. Xu XC, Li JX, Li HS, Cao YH, He BQ, Zhang YZ (2009) J Membr Sci 326:103–110

    Article  CAS  Google Scholar 

  19. Mairal AP, Greenberg AR, Krants WB, Bond LJ (1999) J Membr Sci 159:185–196

    Article  CAS  Google Scholar 

  20. Feng X, Guo YF, Zhao YP, Li JX, Chen X, He XL, Chen L (2011) Chem J Chin U 32:1424–1430

    CAS  Google Scholar 

  21. Zuo DY, Zhu BK, Cao JH, Xu YY (2006) Chin J Polym Sci 24:281–289

    Article  CAS  Google Scholar 

  22. Ying L, Kang ET, Neoh KG (2003) J Membr Sci 224:93–106

    Article  CAS  Google Scholar 

  23. Wang WC, Tian XD, Feng YP, Cao B, Yang WT, Zhang LQ (2010) Ind Eng Chem Res 49:1684–1690

    Article  CAS  Google Scholar 

  24. Yu Q, Zhang YX, Chen H, Zhou F, Wu ZQ, Huang H, Brash JL (2010) Langmuir 10:1021–1027

    Google Scholar 

  25. Ying L, Wang P, Kang ET, Neoh KG (2002) Macromolecules 35:673–679

    Article  CAS  Google Scholar 

  26. Ying L, Yu WH, Kang ET, Neoh KG (2004) Langmuir 20:6032–6040

    Article  CAS  Google Scholar 

  27. Xue J, Chen L, Wang HL, Zhang ZB, Zhu XL, Kang ET, Neoh KG (2008) Langmuir 24:14151–14158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (grant numbers 21074091, 21174103, and 31200719), the Project for Science and Technical Development of China (grant number 2007AA03Z533), the Science Foundation of Tianjin (grant number 12JCYBJC11200), and the Key Grant Project of the Chinese Ministry of Education (grant number 209005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiping Zhao or Li Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Bai, J., Feng, X. et al. Properties of poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) membranes prepared by alkali treatment. J Polym Res 20, 32 (2013). https://doi.org/10.1007/s10965-012-0032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0032-1

Keywords

Navigation