Skip to main content
Log in

Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, effects of commercial additives such as antioxidant and stabilizer on the non-isothermal crystallization kinetics of isotactic polypropylene without nucleating agents were investigated by differential scanning calorimetry (DSC) method. Kinetic parameters by Osawa, Avrami and Liu-Mo models and apparent activation energy of the crystallization by Kissinger model were calculated. A polarized optical microscope was also used to observe crystalline morphology of the polypropylene samples crystallized at different cooling rates. On the contrary rate inducing effects of the nucleating agents on the crystallization kinetics of the polypropylene, interestingly, it was found that such types of commercial additives reduced the overall crystallization rate of the polypropylene. Based on the crystallization kinetics and morphology of the samples, it was observed that commercial additives inhibit the chain diffusion toward the growing crystal faces thus slow the crystal growth rate. Furthermore, calculated nucleation activity (ϕ) for the additives showed that they do not act as effective nucleating agents. It was found that the crystallization activation energy of additive-free sample was higher than that of the sample which has commercial additives. Activation energies were found to be 233.6 and 276.7 kJ mol−1 for the PP-1 and PP-2, respectively. Kinetic results also show importance of using of nucleating agents to increase the crystallization rate of polypropylene by increasing the nucleation and thus overall crystallization rate during polypropylene processing operations (esp. for a fast processing cycle in injection molding).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Feng Y, Jin X (1999) J Appl Polym Sci 72:1559. doi:10.1002/(SICI)1097-4628(19990620)72:12<1559::AID-APP8>3.0.CO;2-F

    Article  CAS  Google Scholar 

  2. Mathieu C, Thierry A, Wittmann JC, Lotz B (2002) J Polym Sci Part B. Polym Phys 40:2504. doi:10.1002/polb.10309

    Article  CAS  Google Scholar 

  3. Mai K, Wang K, Han Z, Zeng H (2002) J Appl Polym Sci 83:1643. doi:10.1002/app.10071

    Article  CAS  Google Scholar 

  4. Marco C, Gomez MA, Ellis G, Arribas JM (2002) J Appl Polym Sci 84:1669. doi:10.1002/app.10546

    Article  CAS  Google Scholar 

  5. Xu T, Lei H, Xie CS (2003) Mater Des 24:227

    CAS  Google Scholar 

  6. Osowiecka B, Bukowski A, Zielinski J, Ciesinska W, Zielinski T (2003) J Therm Anal Calorim 74:673. doi:10.1023/B:JTAN.0000005210.58644.5d

    Article  CAS  Google Scholar 

  7. Zhang F-Y, Xin Z (2007) J Polym Sci Part B. Polym Phys 45:590. doi:10.1002/polb.21072

    Article  CAS  Google Scholar 

  8. Nagarajan K, Leyon K, Myerson AS (2000) J Therm Anal Calorim 59:497. doi:10.1023/A:1010197609840

    Article  CAS  Google Scholar 

  9. Hofmann K, Huber G, Mader D (2001) Macromol Symp 176:83. doi:10.1002/1521-3900(200112)176:1<83::AID-MASY83>3.0.CO;2-N

    Article  Google Scholar 

  10. Wang K, Mai K, Han Z, Zeng H (2001) J Appl Polym Sci 81:78. doi:10.1002/app.1415

    Article  CAS  Google Scholar 

  11. Nandi S, Ghosh AK (2007) J Polym Res 14:387. doi:10.1007/s10965-007-9121-y

    Article  CAS  Google Scholar 

  12. Kissel WJ, Han JH, Meyer JA (2003) In: Karian HG (ed) Handbook of Polypropylene and Polypropylene Composites Marcel Dekker: New York, Chap. 2

  13. Gui Q, Xin Z, Zhu W, Dai G (2003) J Appl Polym Sci 88:297. doi:10.1002/app.11708

    Article  CAS  Google Scholar 

  14. Shepard TA, Delsorbo CR, Louth RM et al (1997) J Polym Sci Part B. Polym Phys 35:2617. doi:10.1002/(SICI)1099-0488(19971130)35:16<2617::AID-POLB5>3.0.CO;2-M

    Article  CAS  Google Scholar 

  15. Kim CY, Kim YC, Kim SC (1993) Polym. Eng Sci 33:1445

    Article  CAS  Google Scholar 

  16. Marco C, Ellis G, Gomez MA, Arribas JM (2002) J Appl Polym Sci 84:2440. doi:10.1002/app.10533

    Article  CAS  Google Scholar 

  17. Jang GS, Cho WJ, Ha CS (2001) J Polym Sci Part B. Polym Phys 39:1001. doi:10.1002/polb.1077

    Article  CAS  Google Scholar 

  18. Zhu G, Li C, Li Z (2001) Eur Polym J 37:1007. doi:10.1016/S0014-3057(00)00201-9

    Article  CAS  Google Scholar 

  19. Li C, Zhang D, Li Z (2002) J Appl Polym Sci 85:2644. doi:10.1002/app.10545

    Article  CAS  Google Scholar 

  20. Broda J (2003) J Appl Polym Sci 90:3957. doi:10.1002/app.13083

    Article  CAS  Google Scholar 

  21. Li C, Zhu G, Li Z (2002) J Appl Polym Sci 83:1069. doi:10.1002/app.10057

    Article  CAS  Google Scholar 

  22. Wang H, Li C, Zhang D, Li Z (2003) J Appl Polym Sci 89:2137. doi:10.1002/app.12360

    Article  CAS  Google Scholar 

  23. Xu W, Ge M, He P (2002) J Polym Sci Part B. Polym Phys 40:408. doi:10.1002/polb.10101

    Article  CAS  Google Scholar 

  24. Pozsgay A, Frater T, Papp L, Sajo E, Pukanszky B (2002) J Macromol Sci Part BPhys 41:1249 . doi:10.1081/MB-120013095

    Article  Google Scholar 

  25. Marco C, Gomez MA, Ellis G, Arribas JM (2002) J Appl Polym Sci 86:531. doi:10.1002/app.10811

    Article  CAS  Google Scholar 

  26. Varga J, Mudra I, Ehrenstein GW (1999) J Appl Polym Sci 74:2357. doi:10.1002/(SICI)1097-4628(19991205)74:10<2357::AID-APP3>3.0.CO;2-2

    Article  CAS  Google Scholar 

  27. Li X, Hu K, Ji M, Huang Y, Zhou G (2002) J Appl Polym Sci 86:633. doi:10.1002/app.10913

    Article  CAS  Google Scholar 

  28. Feng J, Chen M, Huang Z, Guo Y, Hu H (2002) J Appl Polym Sci 85:1742. doi:10.1002/app.10725

    Article  CAS  Google Scholar 

  29. Kotek J, Raab M, Baldrian J, Grellmann W (2002) J Appl Polym Sci 85:1174. doi:10.1002/app.10701

    Article  CAS  Google Scholar 

  30. Jafari SH, Gupta AK (1999) J Appl Polym Sci 71:1153. doi:10.1002/(SICI)1097-4628(19990214)71:7<1153::AID-APP14>3.0.CO;2-8

    Article  CAS  Google Scholar 

  31. Ozawa T (1971) Polymer (Guildf) 12:150. doi:10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  32. An Y, Dong L, Mo Z, Liu T, Feng Z (1998) J Polym Sci Part B. Polym Phys 36:1305. doi:10.1002/(SICI)1099-0488(199806)36:8<1305::AID-POLB5>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  33. Avrami M (1940) J Chem Phys 8:212. doi:10.1063/1.1750631

    Article  CAS  Google Scholar 

  34. De Juana R, Jauregui A, Calahorra E, Cortazar M (1996) Polymer (Guildf) 37:3339. doi:10.1016/0032-3861(96)88480-1

    Article  Google Scholar 

  35. Acar I, Durmus A, Özgümüş S (2007) J Appl Polym Sci 106:4180. doi:10.1002/app.26982

    Article  CAS  Google Scholar 

  36. Jeziorny A (1978) Polymer (Guildf) 19:1142. doi:10.1016/0032-3861(78)90060-5

    Article  CAS  Google Scholar 

  37. An Y, Dong L, Mo Z, Liu T, Feng Z (1998) J Polym Sci Part B. Polym Phys 36:1305. doi:10.1002/(SICI)1099-0488(199806)36:8<1305::AID-POLB5>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  38. Dobreva A, Gutzow I (1993) J Non-Cryst Solids 162:1. doi:10.1016/0022-3093(93)90736-H

    Article  CAS  Google Scholar 

  39. Dobreva A, Gutzow I (1993) J Non-Cryst Solids 162:13. doi:10.1016/0022-3093(93)90737-I

    Article  CAS  Google Scholar 

  40. Kim SH, Ahn SH, Hirai T (2003) Polymer (Guildf) 44:5625. doi:10.1016/S0032-3861(03)00623-2

    Article  CAS  Google Scholar 

  41. Alonso M, Velasco JI, De Saja JA (1997) Eur Polym J 33:255 . doi:10.1016/S0014-3057(96)00159-0

    Article  CAS  Google Scholar 

  42. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP (2005) Thermochim Acta 427:117. doi:10.1016/j.tca.2004.09.001

    Article  CAS  Google Scholar 

  43. Kissinger HE (1956) J Res Natl Stds 57:217

    CAS  Google Scholar 

  44. Qian J, He P, Nie K (2004) J Appl Polym Sci 91:1013. doi:10.1002/app.13283

    Article  CAS  Google Scholar 

  45. Zhang F-Y, Xin Z (2006) J Appl Polym Sci 101:3307. doi:10.1002/app.23883

    Article  CAS  Google Scholar 

  46. Mercier JP (1990) Polym. Eng Sci 30:270

    Article  CAS  Google Scholar 

  47. Beck HN (1967) J Appl Polym Sci 11:673. doi:10.1002/app.1967.070110505

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Research Fund of Istanbul University (Project number: T-835/07032000). The authors thank to Petkim Petrochemicals for supplying samples used in this work and Professor Dr. Serhat Pabuccuoglu, Istanbul University, for his helps in POM study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncer Yalçınyuva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durmus, A., Yalçınyuva, T. Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res 16, 489–498 (2009). https://doi.org/10.1007/s10965-008-9252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9252-9

Keywords

Navigation