Skip to main content
Log in

Porous chitin matrices for tissue engineering: Fabrication and in vitro cytotoxic assessment

Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of porous chitin matrices were fabricated by freezing and lyophilization of chitin gels cast from a 5% N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl) solvent system. The porous chitin matrices were found to have uniform pore structure in the micron range. Scanning electron microscopy (SEM) revealed that the pore size of the porous chitin matrices varied according to the freezing method prior to lyophilization. By subjecting the chitin gels to dry-ice/acetone (−38 °C), the final porous chitin matrix gave pore dimensions measuring 200–500 μm with 69% porosity. A smaller pore dimension of 100–200 μm with 61% porosity was produced when the chitin gels were frozen by liquid nitrogen (−196 °C) and 10 μm pores with 54% porosity were produced when the gels were placed in a freezer (−20 °C) for 20 min. In comparison, lower porosity structures of ca. 10% porosity were obtained from both air-dried and critical point dried chitin gels. Furthermore, a low gel concentration (< 0.5%, w/w) also produced porous morphology by vacuum drying without any freezing and lyophilization. The resulting pore properties influenced the water uptake profile of the materials in water. These porous chitin matrices are found to be non-cytotoxic and to hold promise as potential structural scaffolds for cell growth and proliferation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. Gallardo, C. Elvira, R. J. San and B. A. Lopez, Rev. Plast. Mod., 77, 60 (1979).

    Google Scholar 

  2. E. Wintermantel and J. Mayer, Anisotropic Biomaterials: Strategies and Developments for Bone Implants, D. L. Wise, D. E. Altobelli, E. R. Swartz, Eds., Encyclopedic Handbook of Biomaterials and Bioengineering, New York: M. Dekker Inc; 3, 1995.

    Google Scholar 

  3. R. C. Thomson, M. C. Wake, M. J. Yaszemski and A. G. Mikos, Adv. Polym. Sci., 122, 245 (1995).

    CAS  Google Scholar 

  4. I. V. Yannas, Angew Chem., Int. Ed. Eng., 29, 20 (1990).

    Article  Google Scholar 

  5. E. A. Eser, E. Y. Murat and D. P. George, Neurol Res., 20, 648 (1998).

    Google Scholar 

  6. M. V. Davis and J. P. Vacanti, Biomaterials, 17, 365 (1996).

    Article  CAS  Google Scholar 

  7. A. G. Mikos, G. Sarakinos, M. D. Lyman, D. E. Ingber, J. P. Vacanti and R. Langer, Polym. Mater. Sci. Eng., 66, 34 (1992).

    CAS  Google Scholar 

  8. D. A. Grande, C. Halberstadt, G. Naughton, R. Schwartz and R. Manji, J. Biomed. Mater. Res., 34, 211 (1997).

    Article  CAS  Google Scholar 

  9. L. E. Freed, J. C. Marquis, A. Nohria, K. Emmanual, A. G. Mikos and R. J. Langer, J. Biomed. Mater. Res., 27, 11 (1993).

    Article  CAS  Google Scholar 

  10. S. B. Nicoll, A. Wedrychowska, N. R. Smith and R. S. Bhatnagar, Mater. Res. Soc. Symp. Proc., 3, 530 (1998).

    Google Scholar 

  11. K. Whang, D. C. Tsai, E. K. Nam, M. Aitken, S. M. Sprague, P. K. Patel and K. E. Healy, J. Biomed. Mater. Res., 42, 491 (1998).

    Article  CAS  Google Scholar 

  12. R. Zhang, P. X. May and A. Ann, J. Biomed. Mater. Res., 44, 446 (1999).

    Article  CAS  Google Scholar 

  13. D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti and R. Langer, Biomaterials, 17, 1417 (1996).

    CAS  Google Scholar 

  14. J. M. Williams and D. A. Wrobleski, J. Mat. Sci. Lett., 14, 4062 (1989).

    Google Scholar 

  15. J. H. Aubert and A. P. Sylwester, Chemtech, 21, 234 (1991).

    CAS  Google Scholar 

  16. C. J. Doillon, C. F. Whyne, S. Brandwein and F. H. Silver, J. Biomed. Mater. Res., 20, 1219 (1986).

    Article  CAS  Google Scholar 

  17. F. Bertod, G. Saintigny, F. Chretien, D. Hayek, C. Collomble and O. Damour, Clin. Mater., 15, 259 (1994).

    Google Scholar 

  18. M. S. Widmer, P. K. Gupta, L. Lu, R. K. Meszlenyi, Biomaterials, 19, 1945 (1998).

    Article  CAS  Google Scholar 

  19. J. H. De Groot, H. W. Kujper and A. J. Penings, J. Mater. Sci., Mat. Med., 8, 707 (1997).

    Google Scholar 

  20. A. G. Mikos, A. J. Thorsen, L. A. Czermonka, B. Yuan, R. Langer, Polymer, 35, 1068 (1994).

    Article  CAS  Google Scholar 

  21. S. Hirano, N. Matsuda, O. O. Miura and T. Tanaka, Carbohyd Res., 71, 344 (1979).

    CAS  Google Scholar 

  22. F. L. Mi, SS Shyu, C. T. Chen and J. Y. Schoung, Biomaterials, 20, 1603 (1999)

    Article  CAS  Google Scholar 

  23. S. Shah, R. Qapish, V. Patel and M. Amiji, J. Pharm. Pharmacology, 51, 667 (1999)

    CAS  Google Scholar 

  24. K. Sonomoto, N. Chinachoti, N. Endo and A. Ishizaki, J. Mol. Cat. B, Enzymatic, 10, 325 (2000)

    CAS  Google Scholar 

  25. S. V. Madihally and H. W. T. Matthew, Biomaterials, 20, 1133 (1999).

    Article  CAS  Google Scholar 

  26. P. R. Klokkevold, H. Fukayama, E. C. Sung and C. N. Bertolami, J. Oral and Maxillofacial Surgery, 57, 49 (1999).

    CAS  Google Scholar 

  27. P. A. Sandford and A. Steinnes, ACS Sym. Series, 467, 430 (1991).

    CAS  Google Scholar 

  28. W. Paul and C. P. Sharma, STP Pharma. Sci., 10, 5 (2000).

    CAS  Google Scholar 

  29. S. B. Rao and C. P. Sharma, J. Biomed. Mater. Res., 34, 21 (1997).

    Article  CAS  Google Scholar 

  30. A. Baxter, M. Dillon, K. D. A. Taylor and G. A. F. Roberts, Int. J. Biol. Macromol., 166, 14 (1992).

    Google Scholar 

  31. T. Mosmann, J. Immunol. Meth., 55, 65 (1983).

    Google Scholar 

  32. K. Heeg, L. Reimann, D. Kabelitz, C. Hardt and H. Wagner, J. Immunol. Meth., 77, 237 (1985).

    Article  CAS  Google Scholar 

  33. L. Green, J. L. Reade and C. F. Ware, J. Immunol. Meth., 70, 257 (1984).

    Article  CAS  Google Scholar 

  34. F. Denizot and R. Lang, J. Immunol. Meth., 89, 271 (1986).

    Article  CAS  Google Scholar 

  35. S. Lilia and C. Smadar, Biomaterials, 18, 583 (1997).

    Google Scholar 

  36. N. Dagalakis, J. Flink, P. Stasikelis, J. F. Burke and I. V. Yannas, J. Biomed. Mater. Res., 14, 511 (1980).

    Article  CAS  Google Scholar 

  37. S. V. Madihally, V. K. Watson and H. M. T. Matthew, Proceedings of the fifth world biomaterials congress, 238 (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Khor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sum Chow, K., Khor, E. & Chwee Aun Wan, A. Porous chitin matrices for tissue engineering: Fabrication and in vitro cytotoxic assessment. J Polym Res 8, 27–35 (2001). https://doi.org/10.1007/s10965-006-0132-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-006-0132-x

Keywords

Navigation