Skip to main content
Log in

Testing the causal relationship between academic patenting and scientific publishing in Germany: Crowding-out or reinforcement?

  • Published:
The Journal of Technology Transfer Aims and scope Submit manuscript

Abstract

The paper investigates the intertemporal spillover effects from patenting to future publishing activities and vice versa among university employees with a country focus on the German Laender Bavaria, Saxony and Thuringia. Individual data from university patentees who successfully issued a patent at a public university before and after 2005 from the selected German Laender is used for measuring the Granger-causal effects between both activities. The interaction of personal and institutional characteristics of academic patentees is taken into account. By using Granger-causality tests in a dynamic panel model, we test the overall effect as well as group or Laender specific effects. Our findings show that there is a positive feedback relationship between patenting and publishing activities. An increase in patent applications results in higher numbers of future publications; reciprocally, an increase of publications contributes to a higher output of future patent applications. Additionally, we find interrelations of the research output with seniority, academic degree of the scientists and non-university work experience. The paper further presents findings about motives, skills and experience of so-called star scientists and other academic inventors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. In the context of the herewith presented paper and research, we took the opportunity to add missing information by drawing on patentee’s personal or university websites to specify age and highest university degree of the respondents which we did not receive through the questionnaires.

  2. According to the Web of Science factsheet, the SSCI-E covers over 12,000 of the highest impact journals worldwide from 256 categories, including Open Access journals and 148,000 conference proceedings from the most significant conferences, symposia, seminars, colloquia, workshops, and conventions worldwide.

  3. The selected Laender are thoroughly profiled in Grimm and Jaenicke (2012, p. 459).

  4. All other results are available on request.

References

  • Agrawal, A., & Henderson, R. (2002). Putting patents in context: Exploring knowledge transfer from MIT. Management Science, 48, 44–60.

    Article  Google Scholar 

  • Audretsch, D. B. (2013). From the entrepreneurial university to the university for the entrepreneurial society. Journal of Technology Transfer. doi:10.1007/s10961-012-9288-1.

    Google Scholar 

  • Audretsch, D., & Aldridge, T. (2009). Scientist commercialization as conduit of knowledge spillovers. The Annals of Regional Science, 43(4), 897–905.

    Article  Google Scholar 

  • Azoulay, P., Ding, W., & Stuart, T. (2007). The determinants of faculty patenting behavior: Demographics or opportunities? Journal of Economic Bevahior & Organization, 63(4), 599–623.

    Article  Google Scholar 

  • Azoulay, P., Ding, W., & Stuart, T. E. (2009). The impact of academic patenting on the rate, quality, and direction of (public) research output. Journal of Industrial Economics, 57(4), 637–676.

    Article  Google Scholar 

  • Balconi, M., Breschi, S., & Lissoni, F. (2004). Networks of innovators and the role of academia: An exploration of Italian patent data. Research Policy, 33(1), 127–145.

    Article  Google Scholar 

  • Baldini, N., Grimaldi, R., & Sobrero, M. (2007). To patent or not to patent? A survey of Italian inventors on motivations, incentives, and obstacles to university patenting. Scientometrics, 70(2), 333–354.

    Article  Google Scholar 

  • Bercovitz, J., & Feldman, M. (2008). Academic entrepreneurs: Organizational change at the individual level. Organization Science, 19(1), 69–89.

    Article  Google Scholar 

  • Bishop, K., D’Este, P., & Neely, A. (2011). Gaining from interactions with universities: Multiple methods for nurturing absorptive capacity. Research Policy, 40(1), 30–40.

    Article  Google Scholar 

  • Blumenthal, D., Campbell, E. G., Anderson, M. S., Causino, N., & Louis, K. S. (1996). Withholding research results in academic life science: Evidence from a national survey of faculty. Journal of the American Medical Association, 277(15), 1224–1228.

    Article  Google Scholar 

  • BMBF (Bundesministerium für Bildung und Forschung). (2001). 1. Förderrichtlinie des Bundesministeriums für Bildung und Forschung zur BMBF-Verwertungsoffensive—Verwertungsförderung—vom 27.07.2001. Bundesanzeiger, 144/4.8.2001, 16657.

  • BMBF (Bundesministerium für Bildung und Forschung). (2002). Zur Einführung der Neuheitsschonfrist im Patentrecht—ein USA-Deutschland-Vergleich bezogen auf den Hochschulbereich. Schlussbericht. Bonn.

  • Breschi, S., Lissoni, F., & Montobbio, F. (2008). University patenting and scientific productivity: A quantitative study of Italian academic inventors. European Management Review, 5(2), 91–109.

    Article  Google Scholar 

  • Buenstorf, G. (2009). Is commercialization good or bad for science? Individual-level evidence from the MaxPlanck Society. Research Policy, 38(2), 281–292.

    Article  Google Scholar 

  • Calderini, M., Franzoni, C., & Vezzulli, A. (2007). If star scientists do patent: The effect of productivity, basicness and impact on the decision to patent in the academic world. Research Policy, 36(3), 303–319.

    Article  Google Scholar 

  • Campbell, E. G., Carridge, B. R., Gokhale, M., Berenhaum, L., Hilgartner, S., Holtzman, N. A., et al. (2002). Data withholding in academic genetics. Journal of the American Medical Association, 287(4), 473–480.

    Article  Google Scholar 

  • Carayol, N. (2007). Academic incentives, research organization and patenting at a large French university. Economics of Innovation and New Technology, 16(2), 119–138.

    Article  Google Scholar 

  • Crespi, G., D’Este, P., Fontana, R., & Geuna, A. (2011). The impact of academic patenting on university research and its transfer. Research Policy, 40(1), 55–86.

    Article  Google Scholar 

  • Czarnitzky, D., Glänzel, W., & Hussinger, K. (2009). Heterogeneity of patenting activity and its implications for scientific research. Research Policy, 38(1), 26–34.

    Article  Google Scholar 

  • D’Este, P., Mahdi, S., Neely, A., & Rentocchini, F. (2012). Inventors and entrepreneurs in academia: What types of skills and experience matter? Technovation, 32(5), 293–303.

    Article  Google Scholar 

  • DPMA (Deutsches Patent- und Markenamt). (2006). Jahresbericht 2006. München: Deutsches Patent- und Markenamt.

  • Dumitrescu, E. I., & Hurlin, C. (2012). Testing for Granger non-causality in heterogeneous panels. Economic Modelling, 29(4), 1450–1460.

    Article  Google Scholar 

  • Fabrizio, K. R., & Di Minin, A. (2008). Commercializing the laboratory: Faculty patenting and the open science environment. Research Policy, 35(6), 790–807.

    Google Scholar 

  • Geuna, A. (2001). The changing rationale for European university research funding: Are there negative unintended consequences? Journal of Economic Issues, 32(3), 607–632.

    Google Scholar 

  • Geuna, A., & Mowery, A. (2007). Publishing and patenting in US and European universities. Economics of Innovation and New Technology, 16(2), 67–70.

    Article  Google Scholar 

  • Geuna, A., & Nesta, L. (2006). University patenting and its effects on academic research: The emerging European evidence. Research Policy, 35(6), 790–807.

    Article  Google Scholar 

  • Grandi, A., & Grimaldi, R. (2005). Academics organizational characteristics and the generation of successful business ideas. Journal of Business Venturing, 20, 821–845.

    Article  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438.

    Article  Google Scholar 

  • Greif, S., & Schmiedl, D. (2006). Patentatlas DeutschlandAusgabe 2006. Regionaldaten und Erfindungstätigkeit. München: Deutsches Patent- und Markenamt.

  • Grimm, H. M., & Jaenicke, J. (2012). What drives patenting and commercialization activity at East German universities? The role of new public policy, institutional environment and individual prior knowledge. Journal of Technology Transfer, 37(4), 454–477.

    Article  Google Scholar 

  • Gulbrandsen, M. (2005). But Peter’s in it for the money. The liminality of entrepreneurial scientists. VEST Journal for Science and Technology Studies, 18(1–2), 49–75.

    Google Scholar 

  • Hess, A. M., & Rothaermel, F. T. (2011). When are assets complementary? Star scientists, strategic alliances and innovation in the pharmaceutical industry. Strategic Management Journal, 32(8), 895–909.

    Article  Google Scholar 

  • Hoye, K., & Pries, F. (2009). ‘Repeat commercializers’, the ‘habitual entrepreneurs’ of university–industry technology transfer. Technovation, 29(10), 682–689.

    Article  Google Scholar 

  • Hülsbeck, M., Lehmann, E., & Starnecker, A. (2013). Performance of technology transfer offices in Germany. Journal of Technology Transfer, 38(3), 199–215.

    Article  Google Scholar 

  • Hurlin, C. (2005). Un test simple de l‘hypothèse dans un modèle de panel hétérogène. Revue économique, 56, 799–809.

    Article  Google Scholar 

  • Kim, J. W. (2008). University patenting and scientific productivity. European Management Review, 5(2), 111–113.

    Article  Google Scholar 

  • Klitkou, A., & Gulbrandsen, M. (2009). The relationship between academic patenting and scientific publishing in Norway. Scientometrics, 82, 93–108.

    Article  Google Scholar 

  • Krimsky, J. (2003). Small gifts, conflicts of interest, and the zero-tolerance threshold in medicine. The American Journal of Bioethics, 3(3), 50–52.

    Article  Google Scholar 

  • Landry, R., Amara, N., & Quimet, M. (2007). Determinants of knowledge transfer: evidence from the Canadian researchers in the natural sciences and engineering. Journal of Technology Transfer, 32(6), 561–592.

    Article  Google Scholar 

  • Landry, R., Saihi, M., Amara, N., & Quimet, M. (2010). Evidence on how academics manage their portfolio of knowledge transfer activities. Research Policy, 39(10), 1387–1403.

    Article  Google Scholar 

  • Lowe, R., & Gonzalez-Brambilla, C. (2005). Faculty entrepreneurs and research productivity: Are faculty entrepreneurs stars and is entrepreneurship a distraction? Presentation at the technology transfer conference, 29 September 2005.

  • Meyer, M. (2006). Are patenting scientists the better scholars? An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology. Research Policy, 35(10), 1646–1662.

    Article  Google Scholar 

  • Meyer-Krahmer, F., & Schmoch, U. (1998). Science-based technologies: University-industry interactions in four fields. Research Policy, 27, 835–851.

    Article  Google Scholar 

  • Moutinho, P., Fontes, M., & Godinho, M. (2007). Do individual factors matter? A survey of scientists’ patenting in Portuguese public research organisations. Scientometrics, 70(2), 355–377.

    Article  Google Scholar 

  • Mowery, D. C., & Sampat, B. V. (2005). The Bayh-Dole Act of 1980 and university-industry technology transfer: A model for other OECD governments? Journal of Technology Transfer, 30(1/2), 115–127.

    Google Scholar 

  • Murray, F., & Stern, S. (2007). Do formal intellectual property rights hinder the free flow of scientific knowledge? An empirical test of the anti-commons hypothesis. Journal of Economic Behavior & Organization, 63(4), 648–687.

    Article  Google Scholar 

  • Powers, J. B., & McDougall, P. P. (2005). University start-up formation and technology licensing with firms that go public: A resource-based view of academic entrepreneurship. Journal of Business Venturing, 20(3), 291–311.

    Article  Google Scholar 

  • Rothaermel, F. T., Agung, S. S., & Jiang, L. (2007). University entrepreneurship: A taxonomy of the literature. Industrial and Corporate Change, 16(4), 691–791.

    Article  Google Scholar 

  • Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110–114.

    Article  Google Scholar 

  • Shane, S. (2002). Selling university technology: Patterns from MIT. Management Science, 48(1), 122–137.

    Article  Google Scholar 

  • Shin, J. C., & Cummings, W. K. (2010). Multilevel analysis of academic publishing across disciplines: Research preference, collaboration, and time on research. Scientometrics, 85, 581–594.

    Article  Google Scholar 

  • Stephan, P. E., Gurmu, S., Sumell, A. J., & Black, G. (2007). Who´s patenting in the university? Evidence from the survey of doctorate recipients. Economics of Innovation and New Technology, 16(2), 71–99.

    Article  Google Scholar 

  • van Looy, B., Callaert, J., & Debackere, K. (2006). Publication and patent behavior of academic researchers: Conflicting, reinforcing or merely co-existing? Research Policy, 35(4), 596–608.

    Article  Google Scholar 

  • Walter, T., Ihl, C., Mauer, R., & Brettel, M. (2013). Grace, gold, or glory? Exploring incentives for invention disclosure in the university context. Journal of Technology Transfer. doi:10.1007/s10961-013-9303-1.

  • Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38, 330–336.

    Article  Google Scholar 

  • Welter, F. (2011). Contextualizing entrepreneurship—conceptual challenges and ways forward. EntrepreneurshipTheory and Practice, 35(1), 165–178.

    Article  Google Scholar 

  • Wright, M. (2013). Academic entrepreneurship, technology transfer and society: Where next? Journal of Technology Transfer. doi:10.1007/s10961-012-9286-3.

    Google Scholar 

  • Wright, M., Birley, S., & Mosey, S. (2004). Entrepreneurship and university technology transfer. Journal of Technology Transfer, 29(3–4), 235–246.

    Article  Google Scholar 

  • Zucker, L. G., & Darby, M. R. (1996). Star scientists and institutional transformation: Patterns of invention and innovation in the formation of the biotechnology industry. Proceedings of the national academy of sciences, November 12, 93(23), 12709–12716.

  • Zucker, L. G., Darby, M. R., & Brewer, M. B. (1998). Intellectual human capital and the birth of U.S. biotechnology enterprises. The American Economic Review, 88(1), 290–306.

    Google Scholar 

Download references

Acknowledgments

The research project was initially supported by the German Ministry of Economics (ERP Transatlantic Program). We are grateful for having had the opportunity to present an early version of this paper at the workshop “Academic Policy and the Knowledge Theory of Entrepreneurship” organized by Zoltan Acs, David B. Audretsch and Erik E. Lehmann at the University of Augsburg, Germany, in August 2012. We thank the discussant, Alexander Dilger, and session participants for valuable comments. Further, we acknowledge that the PATON | Landespatentzentrum Thüringen provided us with data on patent applications in 2005 as well as the survey respondents for their commitment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike M. Grimm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, H.M., Jaenicke, J. Testing the causal relationship between academic patenting and scientific publishing in Germany: Crowding-out or reinforcement?. J Technol Transf 40, 512–535 (2015). https://doi.org/10.1007/s10961-014-9353-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10961-014-9353-z

Keywords

JEL Classification

Navigation