Skip to main content
Log in

Limit Theorems for Cylindrical Martingale Problems Associated with Lévy Generators

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove limit theorems for cylindrical martingale problems associated with Lévy generators. Furthermore, we give sufficient and necessary conditions for the Feller property of well-posed problems with continuous coefficients. We discuss two applications. First, we derive continuity and linear growth conditions for the existence of weak solutions to infinite-dimensional stochastic differential equations driven by Lévy noise. Second, we derive continuity, local boundedness and linear growth conditions for limit theorems and the Feller property of weak solutions to stochastic partial differential equations driven by Wiener noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. [9, Theorem 3.11] only applies for square-integrable initial values and trace class Brownian motion. Latter is no restriction due to [6, Proposition 4.7]. Because, due to Proposition 5 in Appendix A and a Gronwall-type argument, weak existence and pathwise uniqueness hold for all initial laws, a Yamada–Watanabe argument shows that also strong existence holds for arbitrary initial laws.

References

  1. Billingsley, P.: Convergence of Probability Measures. Wiley, London (1999)

    MATH  Google Scholar 

  2. Brzeźniak, Z., Maslowski, B., Seidler, J.: Stochastic nonlinear beam equations. Probab. Theory Relat. Fields 132(1), 119–149 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Criens, D.: Cylindrical martingale problems associated with Lévy generators. J. Theor. Probab. 32(3), 1306–1359 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5), 3306–3344 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Da Prato, G., Kwapien, S., Zabczyk, J.: Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23(1), 1–23 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  7. Engel, K., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics. Springer, New York (2006)

    Google Scholar 

  8. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, London (2005)

    MATH  Google Scholar 

  9. Filipović, D., Tappe, S., Teichmann, J.: Jump-diffusions in Hilbert spaces: existence, stability and numerics. Stochastics 82(5), 475–520 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Gatarek, D., Goldys, B.: On weak solutions of stochastic equations in Hilbert spaces. Stoch. Stoch. Rep. 46(1–2), 41–51 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Gawarecki, L., Mandrekar, V., Richard, P.: Existence of weak solutions for stochastic differential equations and martingale solutions for stochastic semilinear equations. Random Oper. Stoch. Equ. 7, 3 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. U.S. Government Printing Office (2001)

  13. He, S., Wang, J., Yan, J.: Semimartingale Theory and Stochastic Calculus. Science Press, New York (1992)

    MATH  Google Scholar 

  14. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  15. Joffe, A., Metivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18(1), 20–65 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Kallenberg, O.: Foundations of Modern Probability. Springer, Berlin (1997)

    MATH  Google Scholar 

  17. Kunze, M.: On a class of martingale problems on Banach spaces. Electr. J. Probab. 18(104), 1–30 (2013)

    MathSciNet  Google Scholar 

  18. Kunze, M.: Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces. Stochastics 85(6), 960–986 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Lindvall, T.: Weak convergence of probability measures and random functions in the function space \(D[0, \infty )\). J. Appl. Probab. 10(1), 109–121 (1973)

    MathSciNet  MATH  Google Scholar 

  20. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Springer, Berlin (2015)

    MATH  Google Scholar 

  21. Maslowski, B., Seidler, J.: On sequentially weakly Feller solutions to SPDE’s. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10(2), 69–78 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Métivier, M.: Semimartingales: A Course on Stochastic Processes. De Gruyter, Berlin (1982)

    MATH  Google Scholar 

  23. Métivier, M., Nakao, S.: Equivalent conditions for the tightness of a sequence of continuous Hilbert valued martingales. Nagoya Math. J. 106, 113–119 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, Berlin (2012)

    Google Scholar 

  25. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  26. Seidler, J.: Weak convergence of infinite-dimensional diffusions. Stoch. Anal. Appl. 15(3), 399–417 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Singh, T.: Introduction to Topology. Springer, Singapore (2019)

    MATH  Google Scholar 

  28. Stroock, D.: Diffusion processes associated with Lévy generators. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 32(3), 209–244 (1975)

    MathSciNet  MATH  Google Scholar 

  29. Stroock, D., Varadhan, S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)

    MATH  Google Scholar 

  30. Tao, T.: An Epsilon of Room, I: Real Analysis. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  31. Walsh, J.: Introduction to Stochastic Partial Differential Equations, pp. 265–439. Springer, Berlin (1986)

    Google Scholar 

  32. Werner, D.: Funktionalanalysis. Springer-Lehrbuch, 7th edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  33. Whitt, W.: Weak convergence of probability measures on the function space \(C[0, \infty )\). Ann. Math. Stat. 41(3), 939–944 (1970)

    MathSciNet  MATH  Google Scholar 

  34. Xie, Y.: Limit theorems of Hilbert valued semimartingales and Hilbert valued martingale measures. Stoch. Process. Appl. 59(2), 277–293 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Criens.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some Facts on Cylindrical Martingale Problems

Appendix A. Some Facts on Cylindrical Martingale Problems

To keep this article self-continuous, we collect some results on cylindrical martingale problems, which are used in the proofs of Theorems 1 and 2. Let \(M^f\) be defined as in (2.2), \(\tau _z\) be defined as in (3.2) and recall that

$$\begin{aligned} \mathcal {D}&= \big \{ g(\langle \cdot , y^*\rangle ) :g \in C^2_c(\mathbb {R}), y^* \in D(A^*)\big \},\\ \mathcal {B}&= \big \{ g (\langle \cdot , y^*\rangle ):g \in C^2_b(\mathbb {R}), y^* \in D(A^*) \big \}. \end{aligned}$$

Proposition 3

The following are equivalent:

  1. (i)

    \(P \in \mathcal {M}(A, b, a, K, \eta )\).

  2. (ii)

    \(P \circ X^{-1}_0 = \eta \), and for all \(n \in \mathbb {N}\) and \(f \in \mathcal {D}\), the process \(M^f_{\cdot \wedge \tau _n}\) is a \(P\)-martingale.

Proof

See [3, Lemma 4.7]. \(\square \)

Proposition 4

  1. (i)

    For all \(f \in \mathcal {B}, t \in \mathbb {R}_+, n \in \mathbb {N}\) and all bounded \(G \subset \mathbb {B}\), it holds that

    $$\begin{aligned} \sup _{x \in G} \big | \mathcal {K} f (x) \big | + \sup _{s \in [0, t]}\sup _{\omega \in \Omega } \big | M^f_{s \wedge \tau _n(\omega )}(\omega )\big | < \infty . \end{aligned}$$
  2. (ii)

    If \(P\in \mathcal {M}(A, b, a, K, \eta )\), then for all \(n \in \mathbb {N}\) and \(f \in \mathcal {B}\) the process \(M^f_{\cdot \wedge \tau _n}\) is a \(P\)-martingale.

Proof

For (i), see [3, Lemma 4.5] including its proof, and for (ii), see [3, Corollary 4.6]. \(\square \)

Proposition 5

Suppose that for all \(x \in \mathbb {B}\) the MP \((A, b, a, K, \varepsilon _x)\) has a unique solution \(P_x\).

  1. (i)

    The map \(x \mapsto P_x\) is Borel, and for all Borel probability measures \(\eta \) on \(\mathbb {B}\), the MP \((A, b, a, K, \eta )\) has a unique solution given by \(\int P_x \eta (\mathrm{d}x)\).

  2. (ii)

    Let \(\rho \) be a stopping time and \(P\) be a probability measure on \((\Omega , \mathcal {F})\) such that \(P \circ X^{-1}_ 0 = \eta \), and for all \(f \in \mathcal {D}\), the process \(M^f_{\cdot \wedge \rho }\) is a local \(P\)-martingale. Then, \(P = \int P_x \eta (\mathrm{d}x)\) on \(\mathcal {F}_\rho \).

Proof

For (i), see [3, Theorem 3.2], and for (ii), see [3, Proposition 4.13]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Criens, D. Limit Theorems for Cylindrical Martingale Problems Associated with Lévy Generators. J Theor Probab 33, 866–905 (2020). https://doi.org/10.1007/s10959-019-00948-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00948-3

Keywords

Mathematics Subject Classification (2010)

Navigation