Skip to main content
Log in

Some Singular Sample Path Properties of a Multiparameter Fractional Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We obtain a spectral representation and compute the small ball probabilities for a (non-increment stationary) multiparameter extension of the fractional Brownian motion. We derive from these results a Chung-type law of the iterated logarithm at the origin and exhibit the singular behaviour of this multiparameter fractional Brownian motion, as it behaves very differently at the origin and away from the axes. A functional version of this Chung-type law is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See for instance [38] for Sazonov’s theorem, and [3] for its use in a similar context, as well as the references therein.

  2. It existed before in the literature, in a more general form. See the references therein.

References

  1. Anderson, T.W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Am. Math. Soc. 6(2), 170–176 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  2. Belinsky, E., Linde, W.: Small ball probabilities of fractional Brownian sheets via fractional integration operators. J. Theor. Probab. 15(3), 589–612 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beznea, L., Cornea, A., Röckner, M.: Potential theory of infinite dimensional Lévy processes. J. Funct. Anal. 261(10), 2845–2876 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, K.L.: On the maximum partial sums of sequences of independent random variables. Trans. Am. Math. Soc. 64, 205–233 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  5. Csáki, E.: A relation between Chung’s and Strassen’s laws of the iterated logarithm. Z. Wahrsch. Verw. Geb. 54(3), 287–301 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Csáki, E., Hu, Y.: On the increments of the principal value of Brownian local time. Electron. J. Probab. 10, 925–947 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Acosta, A.: Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Probab. 11(1), 78–101 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deheuvels, P.: Chung-type functional laws of the iterated logarithm for tail empirical processes. Ann. Inst. Henri Poincaré Probab. Stat. 36(5), 583–616 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  10. Fernique, X.: Intégrabilité des vecteurs Gaussiens. C. R. Acad. Sci. Paris Sér. AB 270, 1698–1699 (1970)

    MATH  Google Scholar 

  11. Gross, L.: Abstract Wiener spaces. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 31–42 (1967)

  12. Herbin, E., Lévy-Véhel, J.: Stochastic 2-microlocal analysis. Stoch. Process. Appl. 119(7), 2277–2311 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Herbin, E., Merzbach, E.: A set-indexed fractional Brownian motion. J. Theor. Probab. 19(2), 337–364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Herbin, E., Xiao, Y.: Sample paths properties of the set-indexed fractional Brownian motion (in preparation, 2016)

  15. Herbin, E., Arras, B., Barruel, G.: From almost sure local regularity to almost sure Hausdorff dimension for Gaussian fields. ESAIM Probab. Stat. 18, 418–440 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu, Y., Pierre-Loti-Viaud, D., Shi, Z.: Laws of the iterated logarithm for iterated Wiener processes. J. Theor. Probab. 8(2), 303–319 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khoshnevisan, D., Lewis, T.M.: Chung’s law of the iterated logarithm for iterated Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 32(3), 349–359 (1996)

    MATH  MathSciNet  Google Scholar 

  18. Khoshnevisan, D., Shi, Z.: Chung’s law for integrated Brownian motion. Trans. Am. Math. Soc. 350(10), 4253–4264 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuelbs, J.: A representation theorem for symmetric stable processes and stable measures on H. Z. Wahrsch. Verw. Geb. 26(4), 259–271 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kuelbs, J.: A strong convergence theorem for Banach space valued random variables. Ann. Probab. 4(5), 744–771 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kuelbs, J., Li, W.V., Talagrand, M.: Lim inf results for Gaussian samples and Chung’s functional LIL. Ann. Probab. 22(4), 1879–1903 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Loève, M.: Probability Theory I, 4th edn. Springer, Berlin (1977)

    MATH  Google Scholar 

  23. Luan, N., Xiao, Y.: Chung’s law of the iterated logarithm for anisotropic Gaussian random fields. Stat. Probab. Lett. 80(23–24), 1886–1895 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mason, D.M., Shi, Z.: Small deviations for some multi-parameter Gaussian processes. J. Theor. Probab. 14(1), 213–239 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Meerschaert, M.M., Wang, W., Xiao, Y.: Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields. Trans. Am. Math. Soc. 365(2), 1081–1107 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Monrad, D., Rootzén, H.: Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Theory Relat. Fields 101(2), 173–192 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Richard, A.: A fractional Brownian field indexed by \(L^2\) and a varying Hurst parameter. Stoch. Process. Appl. 125(4), 1394–1425 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  28. Richard, A.: Local Regularity of Some Fractional Brownian Fields. Ph.D. Thesis, Ecole Centrale Paris and Bar-Ilan University (2014). https://tel.archives-ouvertes.fr/tel-01091243/document

  29. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Stochastic Modeling. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  30. Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Geb. 3(3), 211–226 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stroock, D.W.: Probability Theory: An Analytic View, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  32. Talagrand, M.: The small ball problem for the Brownian sheet. Ann. Probab. 22(3), 1331–1354 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Talagrand, M.: Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23(2), 767–775 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tudor, C.A., Xiao, Y.: Sample path properties of bifractional Brownian motion. Bernoulli 13(4), 1023–1052 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, W.: Almost-sure path properties of fractional Brownian sheet. Ann. Inst. Henri Poincaré Probab. Stat. 43(5), 619–631 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Xiao, Y.: Hausdorff measure of the sample paths of Gaussian random fields. Osaka J. Math. 33, 895–913 (1996)

    MATH  MathSciNet  Google Scholar 

  37. Yaglom, A.M.: Some classes of random fields in \(n\)-dimensional space, related to stationary random processes. Theory Probab. Appl. 2(3), 273–320 (1957)

    Article  Google Scholar 

  38. Yan, J.A.: Generalizations of Gross’ and Minlos’ theorems. In: Séminaire de probabilités XXIII, pp. 395–404 (1989)

Download references

Acknowledgments

The author is grateful to the anonymous referees who helped him improve the quality and organization of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Richard.

Appendix: Proof of Lemma 4.1

Appendix: Proof of Lemma 4.1

For the original proof, see Lemma 5.3 of [7]. We make here the necessary modifications.

$$\begin{aligned} \left( \log \log r^{-1}\right) ^{h/\nu +1/2} \Vert \eta ^{(\ell )}_r - f\Vert _\infty&= \frac{(\log \log r^{-1})^{h/\nu }}{r^{\nu h}} \left\| \varvec{B}(r\cdot ) - r^{\nu h}\sqrt{\log \log r^{-1}} f\right\| _\infty \\&\ge \frac{(\log \log r^{-1})^{h/\nu }}{r^{\nu h}} \left\| \varvec{B}(s\cdot ) - r^{\nu h}\sqrt{\log \log r^{-1}} f\left( \frac{s}{r}\cdot \right) \right\| _\infty \\&\ge \frac{(\log \log u^{-1})^{h/\nu }}{u^{\nu h}} \left\| \varvec{B}(s\cdot ) - r^{\nu h}\sqrt{\log \log r^{-1}} f\left( \frac{s}{r}\cdot \right) \right\| _\infty . \end{aligned}$$

Now choosing \(a= s^{\nu h}\sqrt{\log \log s^{-1}}\) and \(b=u^{\nu h}\sqrt{\log \log u^{-1}}\),

$$\begin{aligned} \left\| \varvec{B}(s\cdot ) - r^{\nu h}\sqrt{\log \log r^{-1}} f\left( \frac{s}{r}\cdot \right) \right\| _\infty\ge & {} \left\| \varvec{B}(s\cdot ) - a f\right\| _\infty - b\left\| f-f\left( \frac{s}{r}\cdot \right) \right\| _\infty \\&- (b-a)\Vert f\Vert _\infty \end{aligned}$$

and we find a bound for each of the last two terms (the first one is exactly the one given in the Lemma). We need the following inequality for \(f\in H^\nu ,\,s,t\in [0,1]^\nu \):

$$\begin{aligned} |f(s)-f(t)|^2 \le M_1 \Vert s-t\Vert ^{2h} \Vert f\Vert _{\nu }^2, \end{aligned}$$

which follows from approximation of f by linear combinations of simple functions of the form \(\lambda (\mathbf {1}_{[0,t_i]}\mathbf {1}_{[0,\cdot ]})\) and the upper bound in Lemma 2.6 (where the constant \(M_1\) comes from). Thus,

$$\begin{aligned} - b \frac{(\log \log u^{-1})^{h/\nu }}{u^{\nu h}} \left\| f-f\left( \frac{s}{r}\cdot \right) \right\| _\infty \ge -M_1 \left( \log \log u^{-1}\right) ^{h/\nu +1/2} \left( 1-\frac{s}{u}\right) ^h \Vert f\Vert _{\nu }. \end{aligned}$$

For the last term, we use the fact that:

$$\begin{aligned} b-a \le \sqrt{u^{2\nu h} \log \log u^{-1} - s^{2\nu h}\log \log s^{-1}}, \end{aligned}$$

which ends the proof of this lemma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, A. Some Singular Sample Path Properties of a Multiparameter Fractional Brownian Motion. J Theor Probab 30, 1285–1309 (2017). https://doi.org/10.1007/s10959-016-0694-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0694-4

Keywords

Mathematics Subject Classification (2010)

Navigation