Skip to main content
Log in

Dvoretzky Type Theorems for Subgaussian Coordinate Projections

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Given a class of functions F on a probability space \((\Omega ,\mu )\), we study the structure of a typical coordinate projection of the class, defined by \(\{(f(X_i))_{i=1}^N : f \in F\}\), where \(X_1,\ldots ,X_N\) are independent, selected according to \(\mu \). We show that when F is a subgaussian class, a typical coordinate projection satisfies a Dvoretzky type theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More details on gaussian processes and their properties may be found in the book [1], which contains a detailed survey on this topic.

References

  1. Dudley, R.M.: Uniform Central Limit Theorems, Cambridge Studies in Advanced Mathematics 63. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  2. Fernique, X.: Régularité des Trajectoires des Fonctiones Aléatoires Gaussiennes, Ecole d’Eté de Probabilités de St-Flour 1974, Lecture Notes in Mathematics 480. Springer, Berlin (1975)

    Google Scholar 

  3. Gordon, Y.: Some inequalities for Gaussian processes and applications. Isr. J. Math. 50(4), 265–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gordon, Y.: Gaussian processes and almost spherical sections of convex bodies. Ann. Probab. 16(1), 180–188 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gordon, Y., Litvak, A., Mendelson, S., Pajor, A.: Gaussian averages of interpolated bodies. J. Approx. Theory 149, 59–73 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Isoperimetry and Processes, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 23. Springer, Berlin (1991)

    MATH  Google Scholar 

  7. Litvak, A., Pajor, A., Rudelson, M., Tomczak-Jaegermann, N.: Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195, 491–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mendelson, S., Pajor, A., Rudelson, M.: On the geometry of random \(\{-1,1\}\)-polytopes. Discrete Comput. Geom. 33(3), 365–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mendelson, S., Pajor, A., Tomczak-Jaegermann, N.: Reconstruction and subgaussian operators. Geom. Funct. Anal. 17(4), 1248–1282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mendelson, S., Tomczak-Jaegermann, N.: A subgaussian embedding theorem. Isr. J. Math. 164, 349–364 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Milman, V.D.: A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funct. Anal. Appl. 5(4), 28–37 (1971)

    MathSciNet  Google Scholar 

  12. Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics 1200. Springer, Berlin (1986)

    Google Scholar 

  13. Pisier, G.: The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94. Cambridge University Press, Cambridge (1989)

  14. Rudelson, M., Vershynin, R.: Combinatorics of random processes and sections of convex bodies. Ann. Math. 164, 603–648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Talagrand, M.: Regularity of Gaussian processes. Acta Math. 159, 99–149 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  17. Van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahar Mendelson.

Additional information

Supported in part by the Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia. Additional support was given by an Israel Science Foundation Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendelson, S. Dvoretzky Type Theorems for Subgaussian Coordinate Projections. J Theor Probab 29, 1644–1660 (2016). https://doi.org/10.1007/s10959-015-0624-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0624-x

Keywords

Mathematics Subject Classification (2010)

Navigation