Skip to main content
Log in

Escape Rate of Markov Chains on Infinite Graphs

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the escape rate of continuous time symmetric Markov chains associated with weighted graphs. The upper rate functions are given in terms of volume growth of the weighted graphs. For a class of symmetric birth and death processes, we obtain sharp upper rate functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aronson, D.G.: Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 22(4), 607–694 (1968). (Addendum 25:221–228, 1971)

    MATH  MathSciNet  Google Scholar 

  3. Barlow, M., Perkins, E.A.: Symmetric Markov chains in \({ Z}^d\): how fast can they move? Probab. Theory Rel. Fields 82(1), 95–108 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bass, R.: Stochastic Processes. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 33. Cambridge University Press, Cambridge (2011)

  5. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1987)

  6. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, New York (1968)

    MATH  Google Scholar 

  7. Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012)

  8. Chung, K.L.: Markov Chains with Stationary Transition Probabilities, 2nd ed. Die Grundlehren der Mathematischen Wissenschaften, Band 104. Springer, New York (1967)

  9. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC (1997)

  10. Coulhon, T., Grigor’yan, A., Zucca, F.: The discrete integral maximum principle and its applications. Tohoku Math. J. 57(4), 559–587 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Colin de Verdière, Y.: Spectres de Graphes, Cours Spécialisés [Specialized Courses], vol. 4. Société Mathématique de France, Paris (1998)

  12. Colin de Verdière, Y., Torki-Hamza, N., Truc, F.: Essential self-adjointness for combinatorial Schrödinger operators II. Math. Phys. Anal. Geom. 14(1), 21–38 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Davies, E.B.: Analysis on graphs and noncommutative geometry. J. Funct. Anal. 111(2), 398–430 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dodziuk, J.: Elliptic Operators on Infinite Graphs. Analysis, Geometry and Topology of Elliptic Operators, pp. 353–368. World Science Publishing, Hackensack (2006)

  15. Dodziuk, J., Mathai, V.: Kato’s Inequality and Asymptotic Spectral Properties for Discrete Magnetic Laplacians. The Ubiquitous Heat Kernel, Contemporary Mathematics, vol. 398, pp. 69–81. Am. Math. Soc., Providence (2006)

  16. Dvoretzky, A., Erdös, P.: Some problems on random walk in space. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 353–367. University of California Press, Berkeley (1951)

  17. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1966)

    MATH  Google Scholar 

  18. Folz, M.: Volume growth and stochastic completeness of graphs. Trans. Amer. Math. Soc. (accepted)

  19. Folz, M.: Gaussian upper bounds for heat kernels of continuous time simple random walks. Electr. J. Probab. 16, 1693–1722 (2011)

    MATH  MathSciNet  Google Scholar 

  20. Frank, R., Lenz, D., Wingert, D.: Intrinsic metrics for (non-local) symmetric Dirichlet forms and applications to spectral theory. arXiv:1012.5050v1 (preprint)

  21. Freedman, D.: Markov Chains. Holden-Day, San Francisco (1971)

    MATH  Google Scholar 

  22. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  23. Grigor’yan, A.: On stochastically complete manifolds. DAN SSSR 290, pp. 534–537 (1986) (in Russian). Engl. transl.: Soviet Math. Dokl., 34(2), 310–313 (1987)

  24. Grigor’yan, A.: Integral maximum principle and its applications. Proc. R. Soc. Edinburgh A 124(2), 353–362 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grigor’yan, A.: Escape rate of Brownian motion on Riemannian manifolds. Appl. Anal. 71(1–4), 63–89 (1999)

    MATH  MathSciNet  Google Scholar 

  26. Grigor’yan, A., Hsu, E.P.: Volume Growth and Escape Rate of Brownian Motion on a Cartan-Hadamard Manifold. Sobolev Spaces in Mathematics. II. International Mathematical Series (New York), vol. 9, pp. 209–225. Springer, New York (2009)

  27. Grigor’yan, A., Huang, X., Masamune, J.: On stochastic completeness for nonlocal Dirichlet forms. Math. Z. doi:10.1007/s00209-011-0911-x

  28. Hamza, K., Klebaner, F.C.: Conditions for integrability of Markov chains. J. Appl. Probab. 32(2), 541–547 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. He, S.-W., Wang, J.-G., Yan, J.-A.: Semimartingale Theory and Stochastic Calculus. Science Press, Beijing, Kexue Chubanshe (1992). (in Chinese)

    MATH  Google Scholar 

  30. Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21(2), 673–709 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hsu, E.P., Qin, G.: Volume growth and escape rate of Brownian motion on a complete Riemannian manifold. Ann. Probab. 38(4), 1570–1582 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Huang, X.: On stochastic completeness of weighted graphs. Ph.D. thesis, Universität Bielefeld

  33. Huang, X.: On uniqueness class for a heat equation on graphs. J. Math. Anal. Appl. 393(2), 377–388 (2011)

    Google Scholar 

  34. Huang, X.: Stochastic incompleteness for graphs and weak Omori-Yau maximum principle. J. Math. Anal. Appl. 379(2), 764–782 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jacod, J.: Multivariate point processes: predictable projection, Radon-Nikodým derivatives, representation of martingales. Z. Wahrscheinlichkeitstheorie Verw. Geb. 31, 235–253 (1974/75)

    Google Scholar 

  36. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd ed. Fundamental Principles of Mathematical Sciences, vol. 288, pp. 235–253. Springer, Berlin (2003)

  37. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. doi:10.1515/CRELLE.2011.122

  38. Keller, M., Lenz, D., Wojciechowski, R.K.: Volume growth, spectrum and stochastic completeness of infinite graphs. Math. Z. (accepted)

  39. Masamune, J., Uemura, T.: Conservation property of symmetric jump processes. Ann. Inst. Henri. Poincare Probab. Stat. 47(3), 650–662 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Masamune, J., Uemura, T., Wang, J.: On the conservativeness and recurrence of symmetric jump-diffusions. J. Funct. Anal. (accepted)

  41. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2, Cambridge University Press, Cambridge (1998), Reprint of 1997 original

  42. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd ed. Applications of Mathematics: Stochastic Modelling and Applied Probability, vol. 21, Springer, Berlin (2004)

  43. Saloff-Coste, L.: Lectures on Finite Markov Chains. Lectures on Probability Theory and Statistics (Saint-Flour, 1996), vol. 1665, pp. 301–413. Springer, Berlin (1997), MR 1490046 (99b:60119)

  44. Stroock, D.: An Introduction to Markov Processes. Graduate Texts in Mathematics, vol. 230. Springer, Berlin (2005)

  45. Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MATH  MathSciNet  Google Scholar 

  46. Varopoulos, NTh: Long range estimates for Markov chains. Bull. Sci. Math. 109(3), 225–252 (1985)

    MATH  MathSciNet  Google Scholar 

  47. Vershik, A.M.: Dynamic theory of growth in groups: entropy, boundaries, examples. Uspekhi Mat. Nauk 55(4), 59–128 (2000)

    Article  MathSciNet  Google Scholar 

  48. Weber, A.: Analysis of the laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370, 146–158 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  49. Woess, W.: Denumerable Markov Chains: Generating Functions, Boundary Theory. Random Walks on Trees. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2009)

  50. Wojciechowski, R.K.: Stochastic completeness of graphs. ProQuest LLC, Ann Arbor (2008), Thesis (Ph.D.), City University of New York

  51. Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58(3), 1419–1441 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. Wojciechowski, R.K.: Stochastically incomplete manifolds and graphs. Progr. Probab. 64, 163–179 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by Project CRC701. This paper is based on part of the author’s Ph.D. thesis [32] at Bielefeld University. The author is grateful to his supervisor, Prof. Grigor’yan for his continuous encouragement. The author would like to thank Dr. Naotaka Kajino and Dr. Yutao Ma for inspiring discussions. We thank the anonymous referee for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueping Huang.

Appendix

Appendix

In this appendix, we collect some basic facts for the stochastic analysis of pure jump martingales and provide a proof for Proposition 6.6. Although results here are not new, it is hard to find explicit references. We include proofs here for the sake of completeness.

The following proposition is a generalization of Theorem 2 in Hamza and Klebaner [28].

Proposition 6.7

Let \((V,w,\mu )\) be a locally finite, connected weighted graph with a fixed reference point \(\bar{x}\in V\) and \(\left(\left( X_t\right)_{t\ge 0} , \mathcal F ^{\bar{x}}, \left( \mathbb P _{x}\right)_{x\in V_{\infty }}\right)\) be the corresponding minimal càdlàg Markov chain. Assume that the process is stochastically complete. Let \(f\) be an unbounded function on \(V\) that satisfies the following conditions:

  1. (1)

    \(f(\bar{x})=0\);

  2. (2)

    the sets \(\{x\in V: |f(x)|\le n\}\) are finite for all \(n\in \mathbb N \);

  3. (3)

    \(f(x)\ne f(y)\) for any pair \(x\sim y\).

Then under \(\mathbb P _{\bar{x}}\), the process \(M\) defined by

$$\begin{aligned} M_t:= f(X_t)+\int \limits _{0}^{t}(\Delta f)\left( X_s\right)\,\text{ d}s \end{aligned}$$

is a local martingale with respect to the filtration \(\mathcal F ^{\bar{x}}\).

Proof

We will follow Jacod and Shiryaev [36] for the theory of random measures and compensators (or dual predictable projections). Every process in the proof will be considered under the probability \(\mathbb P _{\bar{x}}\) and the filtration \(\left(\mathcal F ^{\bar{x}}_t\right)_{t\ge 0}\). We make the convention that \(\inf \emptyset =\infty \). Let in the following

$$\begin{aligned} X_{t-}=\lim _{s\rightarrow t, s<t} X_s, \end{aligned}$$

the existence of which is guaranteed by the càdlàg property of the process.

Consider the process \(Y_t:=f(X_t)\) which is a càdlàg pure jump type process on \(\mathbb R \). Let \(\mu ^f\) be the random measure counting the jumps of \(Y\):

$$\begin{aligned} \mu ^f (\omega ; dt, dx):=\sum _{s}\varvec{1}_{\{Y_s(\omega )-Y_{s-}(\omega )\ne 0\}}\delta _{\left( s, Y_s(\omega )-Y_{s-}(\omega )\right)}(dt, dx), \end{aligned}$$

where \(\delta _{\left( s,x\right)}\) is the Dirac measure on \(\mathbb R \times \mathbb R \) at point \((s, x)\). Note that by the assumption (3) on \(f\), \(f(X_s)-f(X_{s-})\ne 0\) if and only if \(X_s\ne X_{s-}\) (since we have \(X_s \sim X_{s-}\) when \(X_s\ne X_{s-}\)). Define a sequence of stopping times \(\left( \tau _n\right)_{n\ge 0}\) by

$$\begin{aligned} \tau _0=0, \tau _{n+1}=\inf \{t>\tau _n: X_t\ne X_{t-}\}, \end{aligned}$$

which are the jumping times of the process \(X\). We can rewrite \(\mu ^f\) as

$$\begin{aligned} \mu ^f (dt, dx)=\sum _{n\ge 1}\delta _{\left( \tau _n, Y_{\tau _n}-Y_{\tau _n-}\right)}(dt, dx), \end{aligned}$$

where we omit the dependence on the sample \(\omega \) for simplicity.

By Theorem 1.33 in [36] and the strong Markov property of the process \(X\), we have the compensator of \(\mu ^f\) is given by (see, for example [28, 29, 35])

$$\begin{aligned} \nu ^f (dt, \{x\})=\sum _{n\ge 0}\varvec{1}_{\{\tau _n< t\le \tau _{n+1}\}}\text{ deg} \left( X_{\tau _n}\right)\mathbb P _{X_{\tau _n}}[Y_{\tau _{n+1}}-Y_{\tau _{n}}=x] dt. \end{aligned}$$

Let \(S_n=\inf \{t>0: |Y_t|>n\}\). Define another sequence of stopping times \(\left( T_n\right)_{n\ge 1}\) by \(T_n=\min \{n, S_n\}\). Since the process \(X\) is stochastically complete, on each finite time interval \([0, t]\), there are only finitely many jumps of \(X\), \(\mathbb P _{\bar{x}}\) almost surely. It follows that \(\mathbb P _{\bar{x}}\) almost surely, for all \(t>0\), there is some \(n\) such that \(S_n>t\), as \(f\) is unbounded. Then we see that \(\mathbb P _{\bar{x}}\) almost surely \(\lim _{n\rightarrow \infty }T_n=\infty .\)

Consider the functions \(F_n (t, x)=x\cdot \varvec{1}_{\{t\le T_n\}}\). By the property of compensator of a random measure (see for example Theorem 1.8 in [36]), we have for any \(n\),

$$\begin{aligned} \nonumber&\mathbb E _{\bar{x}}\left( \int \limits \vert F_n (t,x)\vert \mu ^f (dt, dx)\right)= \mathbb E _{\bar{x}}\left( \int \limits \vert F_n (t,x)\vert \nu ^f (dt, dx)\right) \\&\quad = \mathbb E _{\bar{x}}\left( \int \limits _{0}^{T_n} \frac{1}{\mu (X_{s-})}\sum _{y\in V}w(X_{s-}, y)|f(X_{s-})-f(y)|\,\text{ d}s\right) \end{aligned}$$
(7.1)
$$\begin{aligned}&\quad = \mathbb E _{\bar{x}}\left( \int \limits _{0}^{T_n} \frac{1}{\mu (X_{s})}\sum _{y\in V}w(X_{s}, y)|f(X_{s})-f(y)|\,\text{ d}s\right). \end{aligned}$$
(7.2)

By locally finiteness of \((V,w,\mu )\) and finiteness of the sets \(\{x\in V: |f(x)|\le n\}\),

$$\begin{aligned} A_n:= \sup _{\{(t,\omega ): 0<t\le T_n(\omega )\}}\frac{1}{\mu (X_s)}\sum _{y\in V}w(X_s, y)|f(X_s)-f(y)|<\infty . \end{aligned}$$

By (7.2), we have

$$\begin{aligned} \mathbb E _{\bar{x}}\left( \int \limits \vert F_n (t,x)\vert \mu ^f (dt, dx)\right)\le A_n T_n\le n A_n<\infty , \end{aligned}$$

whence the process

$$\begin{aligned} |Y|_t:=\int \limits \varvec{1}_{\{s\le t\}}|x|\mu ^f (dt, dx) \end{aligned}$$

is locally integrable.

Then we have by direct calculation

$$\begin{aligned} Y_t=f(X_t)=f(X_t)-f(X_0)&= \int \limits \varvec{1}_{\{s\le t\}}x\mu ^f (dt, dx),\int \limits _{0}^{t}(\Delta f)\left( X_s\right)\,\text{ d}s \\&= \int \limits _{0}^{t} \frac{1}{\mu (X_s)}\sum _{y\in V}w(X_s, y)\left( f(X_s)-f(y)\right)\,\text{ d}s\nonumber \\&= -\int \limits \varvec{1}_{\{s\le t\}}x\nu ^f (dt, dx) \end{aligned}$$

\(\mathbb P _{\bar{x}}\) almost surely, since the right hand side of each equality is well defined. Moreover, by Theorem 1.8 in [36], we have that the process \(M\) is a local martingale since

$$\begin{aligned} M_t=Y_t+\int \limits _{0}^{t}(\Delta f)\left( X_s\right) ds=\int \limits \varvec{1}_{\{s\le t\}}x\left( \mu ^f (dt, dx)- \nu ^f (dt, dx)\right). \end{aligned}$$

\(\square \)

Proposition 7.2

Under the same assumptions of Proposition 7.1, if we assume furthermore that

$$\begin{aligned} \frac{1}{\mu (x)}\sum _{y\in V}w(x,y) (f(x)-f(y))^2\le 1 \end{aligned}$$
(7.3)

for all \(x\in V\), then the process \(M\) is a martingale, and \(\mathbb E _{\bar{x}}(M_t^2)\le t\) for all \(t>0\).

Proof

We adopt the same notations as in the proof of Proposition 6.7. The quadratic variation process \([M, M]\) of the local martingale \(M\) is given by

$$\begin{aligned}{}[M, M]_t=\sum _{0<s\le t}(f(X_s)-f(X_{s-}))^2=\int \limits \varvec{1}_{\{s\le t\}}x^2 \mu ^f (dt, dx). \end{aligned}$$

Note that the quadratic predictable covariation process \(\langle M, M \rangle \) of \(M\) satisfies

$$\begin{aligned} \langle M, M \rangle _t=\int \limits \varvec{1}_{\{s\le t\}}x^2 \nu ^f (dt, dx)=\int \limits _{0}^{t} \frac{1}{\mu (X_s)}\sum _{y\in V}w(X_s, y)\left( f(X_s)-f(y)\right)^2\,\text{ d}s. \end{aligned}$$

By (7.3), we have that for all \(t>0\),

$$\begin{aligned} \mathbb E _{\bar{x}}\left( [M, M]_t\right)= \mathbb E _{\bar{x}}\left( \langle M, M \rangle _t\right)\le t. \end{aligned}$$

Then it follows from standard results in martingale theory that \(M\) is a martingale with

$$\begin{aligned} \mathbb E _{\bar{x}}(M_t^2)=\mathbb E _{\bar{x}}\left( [M, M]_t\right)\le t \end{aligned}$$

for all \(t>0\) (see for example Protter [42], Corollary 3, p. 72). \(\square \)

Remark 7.3

Condition (7.3) corresponds to the adaptedness condition when \(f\) is given by the distance from a reference point. From this martingale theory point of view, we also see that the adapted metric is a natural notion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X. Escape Rate of Markov Chains on Infinite Graphs. J Theor Probab 27, 634–682 (2014). https://doi.org/10.1007/s10959-012-0456-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-012-0456-x

Keywords

Mathematics Subject Classification (1991)

Navigation