Skip to main content
Log in

Dilemmas of Robust Analysis of Economic Data Streams*

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Data streams (streaming data) consist of continuously observed, non-equally spaced and temporally evolving multidimensional data sequences that challenge our computational and/or inferential capabilities. In economics, data streams are among others related to electricity consumption monitoring, Internet user behavior in exploring, or order book forecasting in high-frequency financial markets. In this paper, we point out and discuss several open problems related to robust data stream analysis and propose three robust and conceptually very simple approaches in this context. We apply the proposals to real data sets related to the activity of investors in the futures contracts market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ch. Anagnostopuoulos, D. K. Tasoulis, N. M. Adams, N. G. Pavlidis, and D. J. Hand, “Online linear and quadratic discriminant analysis with adaptive forgetting for streaming classification,” Stat. Anal. Data Mining, No. 5, 139–166 (2012).

  2. Ch. C. Aggerwal, Data Streams — Models and Algorithms, Springer, Berlin (2007).

    Google Scholar 

  3. A. Cuevas, M. Febrero, and R. Fraiman, “Robust estimation and classification for functional data via projection-based depth notions,” Comput. Stat. Data Anal., 22, No. 3, 481–496 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Devroye, L. Gorfi, and L. Gabor, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York (1996).

    Book  Google Scholar 

  5. J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods, Oxford University Press, Oxford (2001).

    MATH  Google Scholar 

  6. R. Dyckerhoff, “Data depths satisfying the projection property,” Allgemeines Stat. Arch., 88, 163–190 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Frainman and G. Muniz, “Trimmed means for functional data,” Test, 10, No. 2, 419–440 (2007).

  8. M. M. Gaber, “Advances in data stream mining,” WIREs Data Mining Knowl. Discov., No. 2, 79–85 (2012).

  9. M. G. Genton and A. Lucas, “Comprehensive definitions of breakdown points for independent and dependent observations,” J. R. Stat., Soc. Ser. B, 65, 81–84 (2003).

  10. T. Górecki and M. Krzyśko, “Functional principal component analysis,” in: Data Analysis Methods and its Applications, J. Pociecha and R. Decker (eds.), Beck, Warsaw (2012), pp. 71–87.

  11. J. Hajek, Theory of Rank Tests, Academia, Prague (1967).

    MATH  Google Scholar 

  12. L. Horvath and P. Kokoszka, Inference for Functional Data with Applications, Springer, New York (2012).

    Book  MATH  Google Scholar 

  13. P. Huber, Data Analysis: What Can Be Learned From the Past 50 Years, Springer, Wiley (2011).

    Book  MATH  Google Scholar 

  14. H. L. Hyndeman, “Forecasting functional time series (with discussion),” J. Korean Stat. Soc., 38, No. 3, 199–221 (2009).

    Article  Google Scholar 

  15. R. J. Hyndman, A. B. Koehler, J. B. Ord, and R. D. Snyder, Forecasting with Exponential Smoothing: the State Space Approach, Springer-Verlag, Berlin (2008).

    Book  MATH  Google Scholar 

  16. D. Kosiorowski, “Functional regression in short term prediction of economic time series,” Stat. Trans., 15, No. 4 (2014).

  17. D. Kosiorowski, “Two procedures for robust monitoring of probability distributions of economic data streams induced by depth functions,” Oper. Res. Dec., 25, No. 1 (2015).

  18. D. Kosiorowski and Z. Zawadzki, “DepthProc: An R package for robust exploration of multidimensional economic phenomena,” http://arxiv.org/pdf/1408.4542.pdf (2014).

  19. D. Kosiorowski and Z. Zawadzki. “Selected issues related to online calculation of multivariate robust measures of location and scatter,” in: Proceedings from VIIIth A. Zelia International Conference, UEK w Krakowie (2014), pp.17–34.

  20. J. Li and R. Y. Liu, “New nonparametric tests of multivariate locations and scales using data depth,” Stat. Sci., 19, No. 4, 686–696 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Y. Liu, “Control charts for multivariate processes,” J. Am. Stat. Assoc., 90, 1380–1387 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Y. Liu, J. M. Parelius, and K. Singh, “Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion),” Ann. Stat., 27, 783–858 (1999).

    MathSciNet  MATH  Google Scholar 

  23. C. Loader, Local Regression and Likelihood, Springer, New York (1999).

    MATH  Google Scholar 

  24. R. A. Maronna, R. D. Martin, and V. J. Yohai, Robust Statistics — Theory and Methods. Wiley, Chichester (2006).

    Book  MATH  Google Scholar 

  25. K. Mosler, “Depth statistics,” in: Robustness and Complex Data Structures, Festschrift in Honour of Ursula Gather, C. Becker, R. Fried, and S. Kuhnt, (eds.), Springer, New York (2013), pp. 17–34.

    Chapter  Google Scholar 

  26. S. Muthukrishan, Data Streams: Algorithms and Applications, Now Publishers, New York (2006).

    Google Scholar 

  27. N. Hautsch, Econometrics of Financial High-Frequency Data, Springer, Heidelberg (2012).

    Book  MATH  Google Scholar 

  28. D. Paindavaine and G. Van Bever, “Nonparametrically Consistent Depth-based Classifiers,” Bernoulli, 21, 62–85 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Paindavaine and G. Van Bever, “From depth to local depth: a focus on centrality,” J. Am. Stat. Assoc., 105, 1105–1119 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. O. Ramsay, G. Hooker, and S. Graves, Functional Data Analysis with R and Matlab, Springer, New York (2009).

    Book  MATH  Google Scholar 

  31. B. Sch¨olkopf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge (2002).

  32. J-P. Stockis, J. Franke, and J. T. Kamgaing, “On geometric ergodicity of charme models,” J. Time Ser. Anal., 31, No. 2, 141–152 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Todorov and P. Filzmoser. “An object-oriented framework for robust multivariate analysis,” J. Stat. Soft., 32, No. 3, 1–47 (2009).

    Article  Google Scholar 

  34. J. Zhang, “Some extensions of Tukey’s depth function,” J. Multivar. Anal., 82, 134–165 (2002).

    Article  MATH  Google Scholar 

  35. Y. Zuo and X. He, “On the limiting distributions of multivariate depth-based rank sum statistics and related tests,” Ann. Stat., 34, 2879–2896 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Zuo and R. Serfling, “General notions of statistical depth function,” Ann. Stat., 28, 461–482 (2000).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kosiorowski.

Additional information

The author acknowledges financial support from the Polish National Science Center grant UMO- 2011/03/B/HS4/01138.

Proceedings of the XXXII International Seminar on Stability Problems for Stochastic Models, Trondheim, Norway, June 16–21, 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosiorowski, D. Dilemmas of Robust Analysis of Economic Data Streams*. J Math Sci 218, 167–181 (2016). https://doi.org/10.1007/s10958-016-3019-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3019-3

Navigation