Skip to main content
Log in

Beneš condition for a discontinuous exponential martingale

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

It is known that the Girsanov exponent \( {{\mathfrak{z}}_t} \), which is a solution of the Doléans-Dade equation \( {{\mathfrak{z}}_{{\, \mathfrak{t}}}}=1+\int\limits_0^t {{{\mathfrak{z}}_s}} \alpha (s)d{B_s} \) generated by a Brownian motion B t and a random process α(t) with \( \int\limits_0^t {{\alpha^2}(s)ds<\infty\,\,a.s} \)., is a martingale provided that the Beneš condition,

$$ {{\left| {\alpha (t)} \right|}^2}\leq \mathrm{const}.\left[ {1 + \mathop{\sup}\limits_{{s\in \left[ {0,t} \right]}}\,\,B_s^2} \right]for\,\,any\,\,\,t>0, $$

holds. In this paper, we show that \( \int\limits_0^t {\alpha (s)d{B_s}} \), can lie replaced by a purely discontinuous square integrable martingale M t with paths from the Skorokhod space \( {{\mathbb{D}}_{{\left[ {0,\infty } \right)}}} \) hailing jumps \( \alpha (s)\varDelta {M_t}>-1 \). The method of proof differs from the original Beneš proof. Bibliography: 13 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Andersen and V. V. Piterbarg, “Moment explosions in stochastic volatility models,” Finance Stoch., 11, 29–50 (2007); DOI 10.1007/s00780-006-0011-7.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. E. Beneš, “Existencc of optimal stochastic control laws,” SIAM J. Control, 9, 446–475 (1971).

    Article  MathSciNet  Google Scholar 

  3. I. V. Girsanov, “On transforming a certan class of stochastic processes by absolutely continuous substitution of measures,” Teor. Veroyatn. Primen., 5, 285–301 (1960).

    Google Scholar 

  4. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, 2nd ed. Springer-Verlag, Berlin (2003).

    MATH  Google Scholar 

  5. M. Hitsuda, “Representation of Gaussian processes equivalent to a Wiener process,” Osaka J. Math., 5, 299–312 (1968).

    MathSciNet  MATH  Google Scholar 

  6. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York-Berlin-Heidelberg (1991).

  7. N. Kazamaki, “On a problem of Girsanov,” Tôhoku Math. J., 29, 597–600 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Kazamaki and T. Sekiguchi, “On the transformation of some classes of martingales by a change of law,” Tôhoku Math. J., 31, 261–279 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. V. Krylov, “A simple proof of a result of A. Novikov,” (May 8, 2009); arXiv:math/020713v2 [math.PR].

  10. R. Sh. Liptser and A. N. Shiryayev, Theory of Martingales, Kluwer Acad. Publ. (1989).

  11. R. Sh. Liptser and A. N. Shiryaev, Statistics of Random Processes. I, 2nd ed., Springer-Verlag, Berlin-New York (2000).

  12. A. A. Novikov, “On conditions of uniform integrability of continuous nonnegative martingales,” Teor. Veroyatn. Primen., 24, 821–825 (1979).

    MATH  Google Scholar 

  13. A. Üstünel and M. Zakai, Transformation of Measure on Wiener Space, Springer-Verlag, Berlin-New York (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Liptser.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 396, 2011, pp. 144–154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liptser, R. Beneš condition for a discontinuous exponential martingale. J Math Sci 188, 717–723 (2013). https://doi.org/10.1007/s10958-013-1162-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1162-7

Keywords

Navigation