Skip to main content
Log in

This paper is the first part of a systematic survey on the structure of classical groups over general rings. We intend to cover various proofs of the main structure theorems, commutator formulas, finiteness and stability conditions, stability and prestability theorems, the nilpotency of K 1, the centrality of K 2, automorphisms and homomorphisms, etc. This first part covers background material such as one-sided inverse, elementary transformations, definitions of obvious subgroups, Bruhat and Gauß decompositions, relative subgroups, finitary phenomena, and transvections. Bibliography: 674 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Abe, “Automorphisms of Chevalley groups over commutative rings,” Algebra Analiz, 5, No. 2, 74–90 (1993).

    Google Scholar 

  2. E. Artin, Geometrieal Algebra [Russian translation], Nauka, Moscow (1969).

    Google Scholar 

  3. A. S. Atkarskaya, “Automorphisms of the group GL n (R), n ≥ 4, over an associative graded ring,” team paper, Moscow State University (2009).

  4. V. G. Bardakov, “On factorization of automorphisms of free modules into prime factors,” Izv. RAN, Ser. Mat., 59, No. 2, 109–128 (1995).

    MathSciNet  Google Scholar 

  5. H. Bass, Algebraic K-theory [Russian translation]. Mir, Moscow (1973).

    Google Scholar 

  6. H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence problem for SL n (n ≥ 3) and Sp2n (n ≥ 2),” Matematika, 14, No. 6, 64–128 (1970); 15, No. 1, 44–60 (1971).

  7. V. M. Bondarko, “On the similarity of matrices over residue rings,” in: Collection of Mathematical Works, Naukova Dumka, Kiev (1976). pp. 275–277.

  8. 8, Z. I. Borewicz and N. A. Vavilov, “Arrangement of subgroups that contain the group of block diagonal matrices in the general linear group over a ring,” Matematika, Izv. VUZ’ov, No. 11, 12–16 (1982).

  9. Z. I. Borewicz and N. A. Vavilov, “On the definition of a net subgroup,” Zap. Nauchn. Semin. LOMI, 132, 26–33 (1983).

    Google Scholar 

  10. Z. I. Borewicz and N. A, Vavilov, “Arrangernent of subgroups in the general linear group over a commutative ring,” Trudy Mat. Inst. AN SSSR, 165, 24–42 (1984).

    Google Scholar 

  11. O. V. Bryukhanov, “Genetics of universal Chevalley groups over some commutative rings,” Mat. Zametki, 57, No. 6, 814–826 (1995).

    MathSciNet  Google Scholar 

  12. N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. IV–VI, Mir, Moscow (1972).

  13. N. A. Vavilov, “Structure of split classical groups over a commutative ring,” Dakl. Acad. Nauk SSSR, 299, No. 6, 1300–1303 (1988).

    MathSciNet  Google Scholar 

  14. N. A. Vavilov, “Computations in exceptional groups,”’ Vestn. Samar. Univ., No. 7, 11–24 (2007).

    Google Scholar 

  15. N. A. Vavilov, Not Quite Naive Linear Algebra. II. Matrix Algebra [in Russian], St. Petersburg (2007).

  16. N. A. Vavilov, “Structure of isotropic reductive groups,” Trudy Inst. Matem. NAN Belarusi, 18, No. 1, 1–13 (2010).

    MathSciNet  Google Scholar 

  17. N. A. Vavilov and M. P. Gavrilovich, “An A2-proof of structure theorems for Chevalley groups of types E6 and E7,” Algebra Analiz, 16, No. 4, 54–87 (2004).

    MathSciNet  Google Scholar 

  18. N. A. Vavilov, M. P. Gavrilovich, and S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book,” Zap. Nauchn. Semin. POMI, 330, 36–76 (2006).

    MATH  Google Scholar 

  19. N. A. Vavilov and V. G. Kazakevich, “One more variation on the theme of decomposition of transvections,” Vestn. SPIJGU, Ser. 1, No. 3, 71–74 (2008).

    Google Scholar 

  20. N. A. Vavilov and V. G. Kazakevich, “Decomposition of transvections for automorphisms,” Zap. Nauchn. Semin. POMI, 365, 47–62 (2009).

    MathSciNet  Google Scholar 

  21. N. A. Vavilov and V. G. Kazakevich, “Some further variations on the decomposition of transvections,” Zap. Nauchn. Semin. POMI, 375, 32–47 (2010).

    MathSciNet  Google Scholar 

  22. N. A. Vavilov and A. Yu. Luzgarev, “An A2-proof of structure theorems for Chevalley groups of type E8,” Algebra Analiz (2011).

  23. N. A. Vavilov and S. I. Nikolenko, “An A2—proof of structure theorems for Chevalley groups of type F4,” Algebra Analiz, 20, No. 4, 27–63 (2008).

    MathSciNet  Google Scholar 

  24. N. A. Vavilov and V. A. Petrov, “On overgroups of Ep(2l, R),” Algebra Analiz, 15, No. 3, 72–114 (2003).

    MathSciNet  Google Scholar 

  25. N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, “Computations in Chevalley groups over commutative rings,” Dolvl. AN SSSR, 40, No. 1, 145–147 (1990).

    MathSciNet  Google Scholar 

  26. N. A. Vavilov and S. S. Sinchuk, “Decompositions of Dennis–Vaserstein type,” Zap. Nauchn. Semin. POMI, 375, 48–60 (2010).

    MathSciNet  Google Scholar 

  27. N. A. Vavilov and S. S. Sinchuk, “Parabolic factorizations of split classical groups,” Algebra Analiz, 23, No. 4, 1–30 (2011).

    MathSciNet  Google Scholar 

  28. N. A. Vavilov and A. K. Stavrova, “The main reductions in the problem of description of normal subgroups,” Zap. Nauchn. Semin. POMI, 349, 30–52 (2007).

    Google Scholar 

  29. N. A. Vavilov and A. V. Stepanov, “On subgroups of the general linear group over a ring that satisfies stability conditions,” Izv. VUZ’ov, No. 10, 19–25 (1989).

  30. N. A. Vavilov and A. V. Stepanov, “The standard commutation formula,” Vestn. SPbGU, Ser. 1, 1, 9–14 (2008).

    Google Scholar 

  31. N, A. Vavilov and A. V. Stepanov, “Overgroups of semisirnple groups,” Vestn. Sarnarsk. Univ., No. 3, 51–95 (2008).

  32. N. A. Vavilov and A. V. Stepanov, “On the standard commutation formula once again,” Vestn, SPbGU, Ser. 1, No. 1, 16–22 (2010).

    MathSciNet  Google Scholar 

  33. L. N. Vaserstein, “K1-theory and the congruence problem,” Mat. Zametki, 5, No. 2, 233–244 (1969).

    MathSciNet  Google Scholar 

  34. L. N. Vaserstein, “On stability of the general linear group over a ring,” Mat. Sb., 79, No. 3, 405–424 (1969).

    Google Scholar 

  35. L. N. Vaserstein, “Stability of unitary and orthogonal groups over rings with involution,” Mat. Sb., 81, No. 3, 328–351 (1970).

    MathSciNet  Google Scholar 

  36. L. N. Vaserstein, “Stable rank of rings and the dimension of topological spaces,” Fankts. Analiz, 5, No. 2, 102–110 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  37. L. N. Vaserstein, “On the group SL2 over Dedekind rings of arithmetic type,” Mat. Sb., 89, No. 2, 313–322 (1972).

    MathSciNet  Google Scholar 

  38. L. N. Vaserstein, “Stability of classical groups over rings,” Mat. Sb., 93, No. 2, 268–295 (1974).

    MathSciNet  Google Scholar 

  39. L. N. Vaserstein and A. V. Nlikhalev. “On normal subgroups of orthogonal group over rings with involution,” Algebra Logika, 9, No. 6, 629–632 (1970).

    Google Scholar 

  40. L. N. Vaserstein and A. A. Suslin, “The Serre problem on projective modules over polynomial rings and algebraic K-theory,” Izv. AN SSSR, Sep. Matem., 40, No. 5, 993–1054 (1976).

    MathSciNet  MATH  Google Scholar 

  41. Y. N. Gerasimov, “The group of units of the free product of rings,” Mat. Sb., 134, No. 1, 42–65 (1987).

    Google Scholar 

  42. I. Z. Golubchik, “On the general linear group over an associative ring,” Usp. Mat. Nauk, 28, No. 3, 179–180 (1973).

    MathSciNet  Google Scholar 

  43. L. Z. Golubchik, “On normal subgroups of the orthogonal group over an associative ring with involution,” Usp. Mat. Nauk, 30, No. 6, 165 (1975).

    MathSciNet  MATH  Google Scholar 

  44. I. Z. Golubchik, “Normal subgroups of linear and unitary groups over rings,” Ph. D. thesis, MGE (1981).

  45. 1. Z, Golubchik, “On normal subgroups of linear and unitary groups over an associative ring,” in: Spaces Over Algebras and Some Questions of Net Theory, Ufa (1985), pp. 122–142.

  46. I. Z. Golubchik, “Isomorphisms of projective groups over associative rings,” Fund. Prikl. Mat., 1, No. 1, 311–314 (1995).

    MathSciNet  MATH  Google Scholar 

  47. I. Z. Golubchilc, “On the general linear group over weakly Noetherian associative rings,” Fund. Prikl. Mat., 1, No. 3, 661–668 (1995).

    Google Scholar 

  48. I. Z. Golubchik, “Groups of Lie type over PI-rings,” Fund. Prikl. Mat., 3, No. 2, 399–424 (1997).

    MathSciNet  MATH  Google Scholar 

  49. I. Z. Golubchik, “Linear groups over associative rings,” Doctoral Thesis, Ufa (1997).

  50. I. Z. Golubchik, “An isomorphism of the group GL2(R) over an associative ring R,” in: Collection of Scientific Works, lzd. Baslikir. GPU, Ufa (2003), pp. 21–34.

  51. I. Z. Golubchik and A. V. Mikhalev, “Epimorphisms of projective groups over associative rings,” in: Algebra, MGU (1982), pp. 34–45.

  52. I. Z. Golubchik and A. Y. Nlikhalev, “Generalized group identities in classical groups,” Zap. Nauchn. Semin. LOMI, 114, 96–119 (1982).

    MATH  Google Scholar 

  53. I. Z. Golubchik and A. V. Mikhalev, “lsomorphisms of the general linear group over an associative ring,” Vestn. Mosk. Univ., Ser. 1, No. 3, 61–72 (1983).

    MathSciNet  Google Scholar 

  54. I. Z. Golubchik and A. V. Mikhalev, “lsomorphisms of unitary groups over associative rings,” Zap. Nauchn. Semin. LOMI, 132, 97–109 (1983).

    MathSciNet  Google Scholar 

  55. I. Z. Golubchik and A. V. Nlikhalev, “On the group of elementary matrices over Pl—rings,” in: Investigations in Algebra, Tbilisi (1985), pp. 20–24.

  56. D. Yu. Grigoriev, “On the relationship between the rank and the multiplicative complexity of a bilinear form over a commutative Noetherian ring,” Zap. Nauchn. Semin. LOMI, 86, 66–81 (1979).

    Google Scholar 

  57. J. Dieuclonné, Geometry of Classical Groups [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  58. K. Kh. Zakiryanov, “A criterion of the occurrence in the subgroup generated by two—dimensional elementary matrices,” Algebra Logika, 22, No. 5, 489–503 (1983).

    MathSciNet  Google Scholar 

  59. K. Kh. Zalciryanov, “Finiteness of the width of symplectic groups over rings of algebraic numbers relative to elementary matrices,” Algebra Logika, 24, No. 6, 667–673 (1985).

    Google Scholar 

  60. K. Kh. Zakiryanov, “On a property for polynomial rings over a discrete valuation ring,” Izv. VUZ’ov, No. 2, 74–90 (1992).

  61. A. E. Zalessky, “Linear groups,” in: Progress in Science, Fundamental Directions, VINITI (1989), pp. 114–228.

  62. E. I. Zelmanov, “Isomorphisms of general linear groups over associative rings,” Sib. Mat. Zhurn., 26, No. 4, 49–67 (1985).

    MathSciNet  Google Scholar 

  63. A. S. Ismagilova, “A homomorphism of the group GL2(R),” Fund. Prikl. Mat., 11, No. 3, 95–108 (2005).

    Google Scholar 

  64. A. S. Ismagilova, “Isomorphisms of unitary groups over rings,” Fund. Prikl. Mat., 12, No. 2, 55–70 (2006).

    MathSciNet  Google Scholar 

  65. I. S. Klein and A. V. Mikhalev, “The orthogonal Steinberg group over a ring with involution,” Algebra Logika, 9, No. 2, 145–166 (1970).

    Article  Google Scholar 

  66. I. S. Klein and A. V. Mikhalev, “The unitary Steinberg group over a ring with involution,” Algebra Logika, 9, No. 5, 510–519 (1970).

    Article  Google Scholar 

  67. P. Cohn, Free Rings and Their Relations [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  68. V. I. Kopeiko. “Stability of symplectic groups over a polynomial ring,” Mat. Sb., 106, No. 1, 94–107 (1978).

    MathSciNet  Google Scholar 

  69. V. I. Kopeiko, “On a Suslin’s theorem,” Zap. Nauchn. Semin. LOMI, 132, 119–121 (1983).

    MathSciNet  Google Scholar 

  70. V. I. Kopeiko, “On the structure of the symplectic group of polynomial rings over regular rings of dimension ≤ 1,” Usp. Mat. Nauk, 47, No. 4, 193–194 (1992).

    MathSciNet  Google Scholar 

  71. V. I. Kopeiko, “On the structure of the symplectic group of plynomial rings over a regular ring,” Fund. Prikl. Mat., 1, No. 2, 545–548 (1995).

    MathSciNet  Google Scholar 

  72. V. I. Kopeiko, “On the structure of the special linear group over Laurent polynomial rings,” Fund. Prikl. Mat., 1, No. 4, 1111–1114 (1995).

    MathSciNet  Google Scholar 

  73. V. I. Kopeiko, “Symplectic: groups over Laurent polynomial rings and patching diagrams.” Fund. Prikl. Mat., 5, No. 3, 943–945 (1999).

    MathSciNet  Google Scholar 

  74. A. Yu. Luzgarev and A. K. Stavrova, “Perfectness of the elementary subgroup of an isotropic reductive group,” Algebra Analiz, 23, No. 5, 140–154 (2011).

    MathSciNet  Google Scholar 

  75. J. Milnor, Introduction to Algebraic K-Theory [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  76. S. V. Nagornyi, “Complex representations of the general linear group of degree 3 modulo a power of a prime number,” Zap. Nauchn. Semin LOMI, 75, 143–150 (1978).

    MathSciNet  Google Scholar 

  77. Yu. P. Nesterenko and A. A. Suslin, “Homology of the general linear group over a local ring and Milnor’s K-theory,” Izu. AN SSSR, Ser. Mat., 53, No. 1, 121–146 (1989).

    MathSciNet  MATH  Google Scholar 

  78. G. A. Noskov, “Generators and defining relations of symplectic groups over some rings,” Mat. Zametki. 26, No. 3, 237–246 (1974).

    MathSciNet  Google Scholar 

  79. O. T. O’Meara, “Lectures in linear groups,” in: Automorphisms of Classical Groups, Mir, Moscow (1976), pp. 57–166.

  80. O. T. O’Meara, Lectures in Symplectic Groups [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  81. O. T. O’Meara. “The general theory of isomorphisms of linear groups.” in: Isomorphisms of Classical Groups Ovr Integral Rings, Mir, Moscow (1980), pp. 58–119.

  82. I. A. Panin, “On stability for orthogonal and symplectic algebraic K-theories,” Algebra Analiz, 1, No. 1, 172–195 (1989).

    Google Scholar 

  83. A. A. Pashchevskii, “Automorphism groups of net subgroups of linear groups,” Ph. D. Thesis, Leningrad State Univ. (1984).

  84. V. M. Petechuk, “Automorphisms of SL n and GL n over some local rings,” Mat. Zametki, 28, No. 2, 187–204 (1980).

    MathSciNet  MATH  Google Scholar 

  85. V. M. Petechuk, “Automorphisms of SL3(R) and GL n (R),” Mat. Zametki, 31, No. 5, 657–668 (1982).

    MathSciNet  MATH  Google Scholar 

  86. V. M. Petechuk, “Automorphisms of matrix groups over commutative rings,” Mat. Sb., 45, 527–542 (1983).

    Article  Google Scholar 

  87. V. M. Petechuk, “Homomorphisrns of linear groups over commutative rings,” Mat. Zametki, 46, No. 5, 50–61 (1989).

    MathSciNet  MATH  Google Scholar 

  88. V. M. Petechuk, “Stability structure of linear groups over rings,” Dopovidi NAN Ukrainy, No. 11, 17–22 (2001).

  89. V. M. Petechuk, “Stability of rings,” Nauk. Visnik Uzhgorod. Un-tu, 19, 87–111 (2009).

    MATH  Google Scholar 

  90. V. A. Petrov, “Odd unitary groups,” Zap. Nauchn. Semin. POMI, 305, 195–225 (2003).

    Google Scholar 

  91. V. A. Petrov, “Overgroups of classical groups,” Ph. D. Thesis, SPb. State Univ. (2005).

  92. V. A. Petrov and A. K. Stavrova, “Elementary subgroups of isotropic reductive groups,” Algebra Analiz, 20, No. 4, 160–188 (2008).

    MathSciNet  Google Scholar 

  93. J.-P. Serre, “The congruence subgroup problem for SL2,” Matematika, 15, No. 6, 12–45 (1971).

    Google Scholar 

  94. R. Steinberg, Lectures in Chevalley Groups [Russian translation], Mir. Moscow (1975).

    Google Scholar 

  95. A. V. Stepanov, “The ideal stable rank of rings,” Vestn. LGU, No. 3, 46–51 (1986).

  96. A. V. Stepanov, “Stable rank and stability of arbitrary rows,” Usp. Mat. Nauk, 48, No. 2, 243–244 (1987).

    Google Scholar 

  97. A. V. Stepanov, “Stability conditions in the theory of linear groups over rings,” Ph. D. Thesis LGU (1987).

  98. A. V. Stepanov, “A ring of finite stable rank is not necessarily Dedekind finite,” Dokl. AN SSSR, 36, No. 2, 301–304 (1988).

    MATH  Google Scholar 

  99. A. V. Stepanov, “Description of subgroups of the general linear group over a. ring with the help of stability conditions,” in: Rings and Linear Groups, Krasnodar (1988), pp. 82–91.

  100. A. V. Stepanov, “On normal structure of the general linear group over a ring,” Zap. Nauchn. Semin. POMI, 236, 166–182 (1997).

    Google Scholar 

  101. A. A. Suslin, “On a Cohn’s theorem,” Zap. Nauchn. Semin. LOMI, 64, 127–130 (1976).

    MathSciNet  MATH  Google Scholar 

  102. A. A. Suslin, “On stably free rnodules,” Mat. Sb., 102, No. 4, 479–492 (1977).

    Article  MathSciNet  Google Scholar 

  103. A. A. Suslin, “On the structure of the special linear group over a polynomial ring,” Izv. AN SSSR, Ser. Mat., 41, No. 2, 235–253 (1977).

    MathSciNet  MATH  Google Scholar 

  104. A. A. Suslin, “Reciprocity laws and the stable rank of a polynomial ring,” Izv. AN SSSR, Ser. Mat., 43, No. 6, 1394–1425 (1979).

    MathSciNet  MATH  Google Scholar 

  105. A. A. Suslin, “Hornology of GL n , characteristic classes, and the Milnor K-theory,” Trudy Mat. Inst. AN SSSR, 165, 188–204 (1984).

    MathSciNet  Google Scholar 

  106. A. A. Suslin and Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings,” Zap. Nauchn. Semin. LOMI, 71, 216–250 (1977).

  107. A. A. Suslin and M. S. Tulenbaev, “Stability theorem for the Milnor K2-functor,” Zap. Nauchn. Semin. LOMI 64, 131–152 (1976).

    MathSciNet  MATH  Google Scholar 

  108. O. I. Tavgen’, “Finite width of arithmetic Chevalley groups of rank ≥ 2,” Dokl. AN SSSR, 310, No. 4, 802–806 (1990).

    MathSciNet  Google Scholar 

  109. O. I. Tavgen’, “Bounded generation of Chevalley groups over rings of algebraic numbers,” Izv. AN SSSR, Ser. Matem., 54, No. 1, 97–122 (1990).

    Google Scholar 

  110. S. Tazhetdinov, “Subnormal structure of two-dimensional linear groups over rings close to fields,” Algebra Logika, 24, No. 4, 414–425 (1985).

    Article  MathSciNet  Google Scholar 

  111. S. Tazhetdinov, “Subnormal structure of symplectic groups over local rungs,” Mat. Zametki, 36, No. 2, 289–298 (1985).

    MathSciNet  Google Scholar 

  112. S. Tazhetdinov, “Normal structure of symplectic groups over rings of stable rank 1,” Mat. Zametki, 39, No. 4, 512–517 (1986).

    MathSciNet  Google Scholar 

  113. S. Tazhetdinov, “Subnormal structure of two-dimensional linear groups over 6-primitiye rings,” Mat. Zametki, 52, No. 4, 99–105 (1992).

    MathSciNet  Google Scholar 

  114. S. Tazhetdinov, “Subnorrnal structure of symplectic groups over (2,3)-full rings,” Sib. Mat. Zhurn., 34, No. 6, 165–169 (1993).

    MathSciNet  Google Scholar 

  115. S. Tazhetdinov, “Subnormal structure of two-dimensional linear groups over full rings,” Mat. Zametki, 71, No. 6, 924–930 (2002).

    Article  MathSciNet  Google Scholar 

  116. S. Tazhetdinov, “Structure of subnormal subgroups of symplectic groups over local rings,” Sib. Mat. Zhurn., 47, No. 3, 665–669 (2006).

    MathSciNet  MATH  Google Scholar 

  117. S. Tazhetdinov, “On subnormal subgroups of linear groups,” Sib. Mat. Zhurn., 49, No. 1, 218–223 (2008).

    MathSciNet  Google Scholar 

  118. M. S. Tulenbaev, “The Schur multiplier of the group of elementary matrices of finite order,” Zap. Nauchn. Semin. LOMI, 86, 162–169 (1979).

    MathSciNet  MATH  Google Scholar 

  119. M. S. Tulenbaev, “The Steinberg group over a polynomial ring,” Mat. Sb., 45, No. 1, 139–154 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  120. C. Faith, Algebra: Rings, Modules, and Categories [Russian translation], I, Mir, Moscow (1977).

    Google Scholar 

  121. J. E. Humphreys, Arithmetic Groups [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  122. S. G. Khlebutin, “Sufficient conditions for normality of the group of elementary matrices,” Usp. Mat. Nauk, 39, No. 3, 245–246 (1984).

    MathSciNet  MATH  Google Scholar 

  123. S. G. Khlebutin, “Some properties of the elementary subgroup,” in: Algebra, Logic, and Number Theory, Izd, MGU, Moscow (1986), pp. 86–90.

  124. E. Abe, “Whitehead groups of Chevalley groups over polynomial rings,” Comm. Algebra, 11, No. 12, 1271–1308 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  125. E. Abe, “Chevalley groups over commutative rings,” in: Proceedings of the Conference on Radical Theory, Sendai (1988), pp. 1–23.

  126. E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math., 83, 1–17 (1989).

    Article  Google Scholar 

  127. E. Abe, “Automorphisms of Chevalley groups over commutative rings,” St. Petersburg Math. J., 5, No. 2, 74–90 (1993).

    Google Scholar 

  128. E. Abe, “Chevalley groups over commutative rings. Normal subgroups and automorphisms,” Contemp. Math., 13–23 (1995).

  129. E. Abe and J. Morita, “Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains,” J. Algebra, 115, 450–465 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  130. E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  131. H. Abels, “Finite presentability of S-arithmetic groups. Compact presentability of solvable groups,” Lecture Notes Math., 1261, Springer-Verlag (1987).

  132. H. Abels, “Finiteness properties of certain arithmetic groups in the function field case,” Israel J. Math., 76, 113–128 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  133. P. Abramenko, “Über einige diskret normierte Furiktionenringe, die keine GE2-Ringe sind,” Archiv Math., 46, 233–239 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  134. P. Abramenko, “Endlichkeitseigenschaften der Gruppen SL n \( \left( {{{\mathbb{F}}_q}\left[ t \right]} \right) \),” Thesis Univ. Frankfurt (1987).

  135. P. Abramenko, “Finiteness properties of Chevalley groups over \( {{\mathbb{F}}_q}\left[ t \right] \),” Israel J. Math., 87, 203–223 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  136. P. Abramenko, “Twrin buildings and applications to S-arithmetic groups,” Lecture Notes Math., 1641, Springer-Verlag (1996).

  137. P, Abrarrienko, “Finiteness properties of groups acting on twin buildings,” in: Groups: Topological, Combinatorial, and Arithmetic Aspects, London Math. Soc. Lecture Notes, 331, Cambridge Univ. Press (2004), pp. 21–26.

  138. P. Abramenko, “On finite and elementary generation of SL2(R),” arXiv:0808.1095v1, 1–20 (2008).

  139. A, N. Acharya, “A note on a stability theorem of the general linear group,” J. Indian Math. Soc., 39, No. 1–4, 51–68 (1975).

    MathSciNet  MATH  Google Scholar 

  140. S. I. Adian and J. Mennicke, “Bounded generation of SL n \( \left( \mathbb{Z} \right) \),” Int. J. Algebra Comput., 2, No. 4, 357–365 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  141. R. Alperin, “SL2 \( \left( {\mathbb{Z}\left[ {{{{1+\sqrt{5}}} \left/ {2} \right.}} \right]} \right) \),” Duke Math. J., 47, No. 3, 487–509 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  142. R. Alperin, “Homology of PSL2 \( \left( {\mathbb{Z}\left[ \omega \right]} \right) \),” Comment. Math. Helv., 55, 364–377 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  143. R. Alperin, “Normal subgroups of PSL2 \( \left( {\mathbb{Z}\left[ {\sqrt{-3 }} \right]} \right) \),” Proc. Amer. Math. Soc., 124, No. 10, 2935–2941 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  144. R. Alperin and D. Wright, “K2(2, k[T, T -1]) is generated by ‘symbols’”, J. Algebra, 59, No. 1, 39–46 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  145. J. B. An and X.-P. Tang, “The structure of symplectic groups over semilocal domains,” Acta Math. Sinica, New Series, 1, No. 1, 1–15 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  146. P. Ara and R. R. Goodearl, “Stable rank of corner rings,” Proc. Amer. Math. Soc., 133, No. 3, 379–386 (2004).

    MathSciNet  Google Scholar 

  147. F. A. Arlinghaus and L. N. Vaserstein. “The work of Pere Menal on normal subgroups.” Publicacions Math., 36, 389–400 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  148. S. Bachmuth and H. Mochizuki, “E2 ≠ SL2 for most Laurent polynomial rings,” Amer. J. Math., 104, 1181–1189 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  149. A. Bak, “The stable structure of quadratic modules,” Thesis, Columbia Univ. (1969).

  150. A. Bak, “Subgroups of the general linear group normalized by relative elementary groups,” Lecture Notes Math., 967, 1–22 (1982).

    Article  MathSciNet  Google Scholar 

  151. A. Bak, “Nonabelian K-theory: The nilpotent class of K1 and general stability,” K-Theory, 4, 363–397 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  152. A. Bak, R. Hazrat, and N. Vavilov, “Localization-completion strikes again: relative K1 is nilpotent by Abelian,” J. Pure Appl. Algebra, 213, 1075–1085 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  153. A. Bak, R. Hazrat, and N. Vavilov, “Structure of hyperbolic unitary groups. II. Normal subgroups,” Algebra Colloq. (2011).

  154. A. Bak, V. Petrov, and Guoping Tang, “Stability for quadratic K1,” K-Theory, 30, No. 1, 1–11 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  155. A. Bak and U. Rehmann, “The congruence subgroup and metaplectic problem for SL n≥2 of division algebras,” J. Algebra, 78, 475–547 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  156. A. Bak and A. Stepanov, “Dimension theory and nonstable K-theory for net groups,” Rend. Sem. Mat. Univ. Padova, 106, 207–253 (2001).

    MathSciNet  MATH  Google Scholar 

  157. A. Bak and Guoping Tang, “Stability for hermitian K1,” J. Pure Appl. Algebra, 150, No. 2, 109–121 (2000).

    Article  MathSciNet  Google Scholar 

  158. A. Bak and N. Vavilov, “Normality for elementary subgroup functors,” Math. Proc. Cambridge Phil. Soc., 118, No. 1, 1–18 (1995).

    Article  MathSciNet  Google Scholar 

  159. A. Bak amd N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7, No. 2, 159–196 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  160. C. Bartolone and F. Bartolozzi, “Topics in geometric algebra over rings,” Rings Geometry, 353–389 (1985).

  161. C. Bartolone and A. G. Spera, “Tits’s theorem for the group PGL2(L), L is not necessarily a commutative local ring,” Ann. Mat. Pura Appl., 149, 297–309 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  162. H. Bass, “The stable structure of quite general linear groups,” Bull. Amer. Math. Soc., 70, No. 3, 430–434 (1964).

    Google Scholar 

  163. H. Bass, “K-theory and stable algebra,” Inst. Hautes Études Sel. Publ. Math., No. 22, 5–60 (1964).

  164. H. Bass, Lectures on Topics in Algebraic K-Theory, Tata Inst. of Fundam. Research. Bombay (1967).

  165. H. Bass, “Some problems in classical algebraic K-theory,” Lecture Notes Math., 342, 3–73 (1973).

    MathSciNet  Google Scholar 

  166. H. Bass, “Unitary algebraic K-theory,” Lecture Notes Math., 343, 57–265 (1973).

    Article  MathSciNet  Google Scholar 

  167. H. Bass, “Introduction to some methods of algebraic K-theory,” Conf. Board Math. Sci., 20 (1974).

  168. H. Bass and J. Tate, “The Milnor ring of a global field,” Lecture Notes Math., 342, 349–446 (1973).

    MathSciNet  Google Scholar 

  169. R. Basu, R. Khanna, and R. A. Rao, “On Quillen’s local global principle.” Contemp. Math., 390, 17–30 (2005).

    Article  MathSciNet  Google Scholar 

  170. R. Basu and R. A. Rao, “Injective stability for K1 of classical modules,” J. Algebra, 323, 867–877 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  171. E. Bayer-Fluckiger and L. Fainsilber, “Nonunimodular Hermitian forms,” Invent. Math., 123, 233–240 (1996).

    MathSciNet  MATH  Google Scholar 

  172. H. Behr, “Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern.” Invent. Math., 7, 1–32 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  173. H. Behr, “Eine endliche Präisentation der symplektischen Gruppe Sp4 \( \left( \mathbb{Z} \right) \),” Math. Z., 141, 47–56 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  174. H. Behr, “Explizite Präsentation von Chevalleygruppen über \( \mathbb{Z} \),” Math. Z., 141, 235–241 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  175. H. Behr, “SL3 \( \left( {{{\mathbb{F}}_q}\left[ t \right]} \right) \) is not finitely presentable,” London Math. Soc. Lecture Notes, 36, 213–224 (1977).

    MathSciNet  Google Scholar 

  176. H. Behr. “Finite presentability of arithmetic groups over global function Helds,” Proc. Edinburgh Math. Soc., 30, 23–39 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  177. H. Behr, “Arithmetic groups over function fields. I. A complete characterisation of finitely generated and finitely presented arithmetic subgroups of reductive groups,” J. relne angew. Math., 495, 79–118 (1998).

    MathSciNet  MATH  Google Scholar 

  178. H. Behr, “Higher finiteness properties of S-arithmetic groups in the function field case. I,” London Math. Soc. Lecture Notes, 331, 27–42 (2004).

    MathSciNet  Google Scholar 

  179. P. Bender, “Eine Präsentation der symplektischen Gruppe Sp(4, \( \mathbb{Z} \)) mit 2 Erzeugenden und 8 definierenden Relationen,” J. Algebra, 65, No. 2, 328–331 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  180. G. M. Bergman, “Coproducts and some universal ring constructions,” Trans. Amer. Math. Soc., 200, 33–88 (1977).

    Article  MathSciNet  Google Scholar 

  181. A. J. Berrick and M. E. Keating, “Rectangular invertible matrices,” Amer. Math. Monthly, 104, No. 4, 297–302 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  182. M. Bestvina and N. Brady, “Morse theory and finiteness properties of groups,” Invent. Math., 129, 445–470 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  183. S. Betley, “Homological stability for O n,n over a local ring,” Trans. Amer. Math. Soc., 303, No. 1. 413–429 (1987).

    Google Scholar 

  184. S. Betley, “Vanishing theorems for homology of GL n R,” J. Pure Appl. Algebra, 58, 213–226 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  185. S. Betley, “Homological stability for O n,n over semi-local rings,” Glasgow Math. J., 32, No. 2, 255–259 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  186. M. Bhargava, “Higher composition laws. l. A new view of Gauß composition and quadratic generalizations,” Ann. Math., 159, 217–250 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  187. M. Bhargava, “Higher composition laws. ll. On cubic analogues of Gauß composition,” Ann. Math., 159, 865–886 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  188. M. Bhargava, “Higher composition laws. III. The parametrization of quartic rings,” Ann. Math., 159, 1329–1360 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  189. M. Bhargava, “Higher composition laws. IV. The parametrization of quintic rings,” Ann. Math., 167, 53–94 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  190. M. L. Bolla, “lsomorphism of general linear groups over rings,” J. Algebra, 96, 592–602 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  191. A, Borel, “On the automorphisms of certain subgroups of semisimple Lie groups,” in: Proceedings of the Bombay Colloquium on Algebraic Geometry (1968), pp, 43–73.

  192. A. Borel and J. Tits, “On abstract homomorphisms of simple algebraic groups,” in: Proceedings of the Bombay Colloquium on Algebraic Geometry (1968), pp. 75–82.

  193. A. Borel and J. Tits, “Homomorphismes “abstraits” de groupes algébriques semi-simples,” Ann. Math., 73, 499–571 (1973).

    Article  MathSciNet  Google Scholar 

  194. J. Brenner, “The linear homogeneous groups. III.” Ann. Math., 71, 210–223 (1960).

    Google Scholar 

  195. J. Browkin and J. Hurrelbrink, “On the generation of K 2 \( \left( \mathcal{O} \right) \) by symbols,” Lecture Notes Math., 1046, 29–31 (1982).

    Article  MathSciNet  Google Scholar 

  196. E. I. Bunina, “Automorphisms of adjoint Chevalley groups of types A l , D l , E l over local rings,” arXiv:math/0702046, 1–20 (2007).

  197. E. I. Bunina, “Automorphisms of Chevalley groups of types B2 and G2 over local rings,” arXiv:math/0711.0531, 1–21 (2007).

  198. E. I. Bunina, “Automorphisms of Chevalley groups of type F4 over local rings with 1/2,” J. Algebra, 323, 2270–2289 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  199. K.-U. Bux and K. Wortman, “A geometric proof that SL2 \( \left( {\mathbb{Z}\left[ {t,{t^{-1 }}} \right]} \right) \) is not finitely presented,” Algebr. Geom. Topol., 6, 839–852 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  200. K.-U. Bux and K. Wortman, “Finiteness properties of arithmetic groups over function fields,” Invent. Math., 167, 355–378 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  201. K.-U. Bux, A. Mohammadi, and K. Wortman, “SL n \( \left( {\mathbb{Z}\left[ x \right]} \right) \) is not FP n-1,” Comment. Math. Helv., 85, 151–164 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  202. Cao Chongguang and Wang Luqun, “Normal subgroups of symplectic groups over rings with one in its stable range,” Acta Math. Sinica, 29, 323–326 (1986).

    MathSciNet  MATH  Google Scholar 

  203. D. Carter and G. E. Keller, “Bounded elementary generation of SL n \( \left( \mathcal{O} \right) \),” Amer. J. Math, 105, 673–687 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  204. D. Carter and G. E. Keller, “Elementary expressions for unimodular matrices,” Commun. Algebra, 12, 379–389 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  205. D. Carter and G. E. Keller, “Bounded elementary expressions in SL(2, \( \mathcal{O} \)),” Preprint Univ. Virginia (1985).

  206. D. Carter and G. E. Keller, “‘The congruence subgroup problem for nonstandard models,” Preprint Univ. Virginia (1985).

  207. D. Carter, G, E. Keller, and E. Paige, “Bouncled expressions in SL(2, \( \mathcal{O} \)).” Preprint Univ. Virginia (1985).

  208. R. W. Carter and Yu Chen, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings,” J. Algebra, 155, 44–94 (1993).

    Google Scholar 

  209. J.-L. Cathelineau, “The tangent complex to the Bloch–Suslin complex,” Bull. Soc. Math. France, 135, 565–597 (2007).

    MathSciNet  MATH  Google Scholar 

  210. C. Chang, “The structure of the symplectic groups over semi-local domains,” J. Algebra, 35, 457–476 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  211. C. N. Chang, “Orthogonal groups over semi-local domains,” J. Algebra, 37, 137–164 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  212. R. Charney, “Homology stability for GL n over a Dedekind domain,” Inv. Math., 56, 1–17 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  213. R. Charney, “On the problem of homology stability for congruence subgroups,” Comm. Algebra, 12, 2081–2123 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  214. R. Charney, “A generalization of a theorem of Vogtmann,” J. Pure Appl. Algebra, 44, 107–125 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  215. P. Chattopadhyay and R. A. Rao, “Elementary symplectic orbits and improved K1-stability,” J. K-theory, 7, No. 2, 389–403 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  216. Chen Huanyin and Chen Miaosen, “On products of three triangular matrices over associative rings,” Linear Algebra Applic., 387, 297–311 (2004).

    Article  MATH  Google Scholar 

  217. Chen Sheng and You Hong, “Subrings in imaginary quadratic fields which are not universal for GE2,” Acta Arithm., 107, No. 3, 299–305 (2003).

    Article  MATH  Google Scholar 

  218. Chen Yu, “Isomorphic Chevalley groups over integral domains,” Rend. Sem. Mat. Univ. Padova, 92, 231–237 (1994).

    MathSciNet  MATH  Google Scholar 

  219. Chen Yu, “On representations of elementary subgroups of Chevalley groups over algebras,” Proc. Amer. Math. Soc., 123, No. 8, 2357–2361 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  220. Chen Yu, “Automorphisms of simple Cheyalley groups over \( \mathbb{Q} \)-algebras,” Tôhoku Math. J., 348, 81–97 (1995).

    Google Scholar 

  221. Chen Yu, “lsomorphisms of adjoint Chevalley groups over integral domains,” Trans. Amer. Math. Soc., 348, No. 2, 521–541 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  222. Chen Yu, “Isomorphisms of Chevalley groups over algebras,” J. Algebra, 226, No. 2, 719–741 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  223. Chen Yu, “Representation of degree two for elementary matrices over rings,” Comm. Algebra, 30, No. 9, 4219–4234 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  224. Chu Huali, “On the GE2 of graded rings,” J. Algebra, 90, No. 1, 208–216 (1984).

    Article  MathSciNet  Google Scholar 

  225. Clin Huali, “The rows of a matrix in E 2 (R[X]),” Chinese J. Math., 12, No. 4, 245–254 (1984).

    MathSciNet  Google Scholar 

  226. P. M. Cohn, “Some remarks on the invariant basis property,” Topology, 5, 215–228 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  227. P. M. Cohn, “On the structure of GL2 over a ring,” Inst. Hautes Études Sci. Publ. Math., No. 30, 5–53 (1966).

  228. P. M. Cohn, “A presentation of GL2 of Euclidean imaginary quadratic number fields,” Mathematika, 15, 156–163 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  229. P. M. Cohn, “Automorphisms of two-dimensional linear groups over Euclidean domains,” J. London Math. Soc., 1, 279–292 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  230. P. M. Cohn, “K2 of polynomial rings and of free algebras,” in: Proceedings of the Conference on Ring Theory, Academic Press, N. Y. – London (1972), pp. 117–123.

  231. P. M. Cohn and L. Gerritzen, “On the group of symplectic matrices over a free associative algebra,” J. London Math. Soc., 63, No. 2, 353–363 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  232. G. Cooke and P. J. Weinberger, “On the construction of division chains in algebraic number fields with application to SL2,” Comm. Algebra, 3, 481–524 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  233. G. Corach and A. R. Larotonda, “Le rang stable de certaines algèbres d’opérateurs,” C. R. Acad. Sci. Paris, Sér I. Mathématique, 296, No. 23, 949–951 (1983).

    MathSciNet  MATH  Google Scholar 

  234. D. L. Costa, “Zero-dimensionality and the GE2 of polynomial rings,” J. Pure Appl. Algebra, 50, 223–229 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  235. D. L. Costa and G. E. Keller, “On the normal subgroups of SL(2,A),” J. Pure Appl. Algebra, 53, 201–226 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  236. D. L. Costa and G. E. Keller, “On the normal subgroups of GL(2,A),” J. Algebra, 135, 395–226 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  237. D. L. Costa and G. E. Keller, “Normal subgroups of SL(2,A),” Bull. Amer. Math. Soc., 24, 131–135 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  238. D. L. Costa and G. E. Keller, “The E(2, A) sections of SL(2, A),” Ann. Math., 134, No. 1, 159–188 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  239. D. L. Costa and G. E. Keller, “Radix redux: normal subgroups of symplectic group,” J. reine angew. Math., 427, 51–105 (1992).

    MathSciNet  MATH  Google Scholar 

  240. D. L. Costa and G. E. Keller, “Abstract radices,” Comm. Algebra, 25, No. 7, 2099–2104 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  241. D. L. Costa and G. E. Keller, “Power residue symbol and the central sections of SL(2, A),” K-Theory, 15, No. 1, 33–98 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  242. D. L. Costa and G. E. Keller, “On the normal subgroups of G2(A),” Trans. Amer. Math. Soc., 351, No. 12, 5051–5088 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  243. R. K. Dennis, “Stability for K2,” Lecture Notes. Math., 353, 85–94 (1973).

    Article  MathSciNet  Google Scholar 

  244. R. K. Dennis, “The GE2 property for discrete subrings of \( \mathbb{C} \),” Proc. Amer. Math. Soc., 50, 77–82 (1975).

    MathSciNet  MATH  Google Scholar 

  245. R. K. Dennis and M. Krusemeyer, “K2(A[X, Y]/XY), a problem of Swan and related computations,” J. Pure Appl. Algebra, 15, 125–148 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  246. R. K. Dennis, B. Magurn, and L. N. Vaserstein, “Generalized Euclidean group rings,” J. reine angew. Math., 351, 113–128 (1984).

    MathSciNet  MATH  Google Scholar 

  247. R. K. Dennis and M. R. Stein, “The functor K2: a survey of computations and problems,” Lecture Notes Math., 342, 243–280 (1972).

    MathSciNet  Google Scholar 

  248. R. K. Dennis and M. R. Stein, “Injective stability for K2 of local rings,” Bull. Amer. Math. Soc., 80, 1010–1013 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  249. R. K. Dennis and M. R. Stein, “K2 of discrete valuation rings,” Advances Math., 18, 182–238 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  250. R. K. Dennis and L. N. Vaserstein, “On a question of M. Newman 0n the number of commutators,” J. Algebra, 118, 150–161 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  251. R. K. Dennis and L. N. Vaserstein, “Commutators in linear groups,” K-theory, 2, 761–767 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  252. W. Dicks and B. Hartley, “On homomorplisms between special linear groups over division rings,” Comm. Algebra, 19, 1919–1943 (2001).

    MathSciNet  Google Scholar 

  253. M. H. Dull, “Automorphisms of PSL2 over domains with few units.” J. Algebra, 27, 372–379 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  254. M. H. Dull, “Automorphisms of the two-dimensional linear groups over integral domains,” Amer. J. Math., 41, 1–40 (1974).

    Article  MathSciNet  Google Scholar 

  255. M. J. Dunwoody, “K2 of a Euclidean ring,” J. Pure Appl. Algebra, 7, 563–58 (1976).

    Article  Google Scholar 

  256. W. G. Dwyer, “Twisted homological stability for general linear groups,” Ann. Math., 111, 239–251 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  257. P. Elbaz-Vincent, “The indecomposable K 3 of rings and homology of SL2,” J. Pure Appl. Algebra, 132, No. 1, 27–71 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  258. P. Elbaz-Vincent, “Homology of linear groups with coefficients in the adjoint action and K-theory,” K-Theory, 16, No. 1, 35–50 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  259. E. Ellers and H. Ishibashi, “Factorization of transformations over a local ring,” Linear Algebra. Appl., 85, No. 1, 17–27 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  260. E. W. Ellers and H. Lausch, “Length theorems for the general linear group of a module over a local ring,” J. Austral. Math. Soc. Ser. A, 46, 122–131 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  261. E. W. Ellers and H. Lausch, “Generators for classical groups of modules over local rings,” J. Geometry, 39, No. 1–2, 60–79 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  262. I. V. Erovenko, “SL n (F[x]) is not boundedly generated by elementary matrices: explicit proof,” Electronic J. Linear Algebra, 11, 162–167 (2004).

    MathSciNet  MATH  Google Scholar 

  263. I. V. Erovenko and A. S. Rapinchuk, “Bounded generation of some S-arithmetic orthogonal groups,” C. R. Acad. Sci., 333, No. 5, 395–398 (2001).

    MathSciNet  MATH  Google Scholar 

  264. I. Y. Erovenko and A. S. Rapinchuk, “Bounded generation of S-arithmetic subgroups of isotropic orthogonal groups over number fields,” J. Number Theory, 119, No. 1, 28–48 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  265. D. R. Estes and J. Ohm, “Stable range in commutative rings,” J. Algebra, 7, No. 3, 343–362 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  266. B. Fine and M. Newman, “The normal subgroup structure of the Picard groups,” Trans. Amer. Math. Soc., 302, 769–786 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  267. D. Flöge, “Zur Struktur der PSL2 über einigen irnaginär-quadratischen Zahlringen,” Math. Z., 183, 255–279 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  268. T. Fournelle, S. Sidki, and K. Weston, “On algebraic embeddings of rings into groups,” Arch. Math., 51, 425–433 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  269. M. R. Gabel, “Lower bounds on the stable range of polynomial rings,” Pacific J. Math., 61, No. 1, 117–120 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  270. M. R. Gabel and A. V. Geramita, “Stable range for matrices,” J. Pure Appl. Algebra, 5, No. 1, 97–112 (1974); Erratum, ibid. 7, 236 (1976).

  271. A. S. Garge and R. A. Rao, “A nice group structure on the orbit space of unimodular vectors,” K-Theory, 38, No. 2, 113–133 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  272. A. S. Garge, “The Steinberg formula for orbit groups,” Expositiones Math., 27, 341–349 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  273. S. C. Geller, “On the GE n of a ring,” Ill. J. Math., 21, No. 1, 109–112 (1977).

    MathSciNet  MATH  Google Scholar 

  274. S. C. Geller and C. A. Weibel, “K1 (A, B, I),” J. reine angew. Math., 342, 12–34 (1983).

    MathSciNet  MATH  Google Scholar 

  275. S. C. Geller and C. A. Weibel, “Subgroups of the elementary and Steinberg groups of congruence level I 2,” J. Pure Appl. Algebra, 35, 123–132 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  276. S. C. Geller and C. A. Weibel, “K1 (A, B, I). II,” K-Theory, 2, 753–760 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  277. L. Gerritzen, “Symplectic 2 × 2 matrices over free algebras,” Indag. Math., 10, No. 4, 507–512 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  278. I. Z. Golubchik, “lsomorphisms of the general linear group GL n (R), n ≥ 4, over an associative ring,” Contemp. Math., 131, No. 1, 123–136 (1992).

    Article  MathSciNet  Google Scholar 

  279. K. R. Goodearl and P. Menal, “Stable range one for rings with many units,” J. Pure Appl. Algebra, 54, 261–287 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  280. D. R. Grayson, “SK1 of an interesting principal ideal domain,” J. Pure Appl. Algebra, 20, 157–163 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  281. Sh. M. Green, “Generators and relations for K2 of a division ring,” Lecture Notes Math., 551, 74–76 (1976).

    Article  Google Scholar 

  282. Sh. M. Green, “Generators and relations for the special linear group over a division ring,” Proc. Amer. Math. Soc., 62, No. 2, 229–232 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  283. F. J. Grunewald, J. Mennicke, and L. N. Vaserstein, “On symplectic groups over polynomial rings,” Math. Z., 206, No. 1, 35–56 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  284. F. J. Grunevvald, J. Mennicke, and L. N. Vaserstein, “On the groups SL2 \( \left( {\mathbb{Z}\left[ x \right]} \right) \) and SL2 (K[x, y]),” Israel J. Math., 86, No. 1–3, 157–193 (1994).

    Article  MathSciNet  Google Scholar 

  285. F. J. Grunewald and J. Schwermer, “Free non-Abelian quotients ot SL2 over orders of imaginary quadratic number fields,” J. Algebra, 69, 298–304 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  286. D. Guin, “Stabilité de l’homologie du groupe linéare et K-théorie algébrique,” C. R. Acad. Sci. Paris, 304, 219–222 (1987).

    MathSciNet  MATH  Google Scholar 

  287. D. Guin, “Homologie du groupe linéare et K-théorie de Milnor des anneaux,” J. Algebra, 123, No. 1, 27–59 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  288. S. K. Gupta and M. P. Murthy, “Suslin’s work on linear groups over polynomial rings and Serre problem,” ISI Lect. Notes, 8 (1980).

  289. G. Habdank, “A classification of subgroups of Λ-quadratic groups normalized by relative elementary subgroups,” Dissertation Universitat Bielefeld (1987).

  290. G. Habdank, “A classification of subgroups of Λ-quadratic groups normalized by relative elementary subgroups,” Adv. Math., 110, No. 2, 191–233 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  291. U. Hadad, “Uniform Kazhdan constant for some familes of linear groups,” J. Algebra, 318, No. 2, 607–618 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  292. A. J. Hahn, “On the homomorphisms of the integral linear groups,” Math. Ann., 197, 234–250 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  293. A. J. Hahn, “lsomorphisms of the integral classical groups and their congruence subgroups,” Amer. J. Math., 97, No. 4, 865–887 (1975).

    Article  MathSciNet  Google Scholar 

  294. A. J. Hahn, “Cayley algebras and the automorphisms of PO′8 (V) and PΩ8 (V),” Amer. J. Math., 98, No. 4, 953–987 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  295. A. J. Hahn, “Cayley algebras and the isomorphisms of the orthogonal groups over arithmetic and local domains,” J. Algebra, 45, 210–246 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  296. A. J. Hahn, “Isomorphisms theory for orthogonal groups over arbitrary integral domains,” J. Algebra, 51 (1978), 233–287.

    Article  MathSciNet  MATH  Google Scholar 

  297. A. J. Hahn, “Category equivalences and linear groups over rings.” J. Algebra, 77, No. 2, 505–543 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  298. A. J. Hahn, “The finite presentability of linear groups.” Contemp. Math., 82, 23–33 (1989).

    Article  Google Scholar 

  299. A. J. Hahn, D. G. James, and B. Weisfeiler, “Homomorphisms of algebraic and classical groups: a survey,” Canad. Math. Soc. Proc., 4, 249–296 (1984).

    MathSciNet  Google Scholar 

  300. A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin et al. (1989).

  301. R. Hazrat, “Dimension theory and nonstable K1 of quadratic module,” K-theory, 27, 293–327 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  302. R. Hazrat. V. Petrov, and N. Vavilov, “Relative subgroups in Chevalley groups,” J. K-theory, 5, No. 3, 603–618 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  303. R. Hazrat, A. Stepanov, N. Vavilov, and Zhang Zuhong, “The yoga of commutators,” Zap. Nauchn. Semin. POMI, 287, 53–82 (2011).

    Google Scholar 

  304. R. Hazrat and N. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  305. R. Hazrat and N. Vavilov, “Bak’s work on K-theory of rings Qvith an appendix by Max Karoubi),” J. K-Theory, 4, No. 1, 1–65 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  306. R. Hazrat, N. Vavilov, and Zhang Zuhong, “Relative unitary commutator calculus, and applications,” J. Algebra, 343, No. 1, 107–137 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  307. R. Hazrat, N. Vavilov, and Zhang Zuhong, “Relative Commutator Calculus in Chevalley groups,” J. Algebra, 1–32 (2012) (to appear).

  308. R. Hazrat and Zhang Zuhong, “Generalized commutator formula,” Comm. Algebra, 38, No. 4, 1441–1454 (2011).

    Article  Google Scholar 

  309. R. Herman and L. N. Vaserstein, “The stable range of C*-algebras,” Invent. Math., 77, No. 3, 553–555 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  310. J. A. Hermida-Alonso, “Linear algebra over commutative rings,” in: Handbook of Algebra, 3 (2003), pp. 3 61.

  311. A. C. Hibbard, “A new presentation of hyperbolic classical groups over a division ring,” J. Algebra, 165, No. 2, 360–379 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  312. A. C. Hibbard, “The generation of U2n (R, Λ) and the presentation of O+ 2n (R),” J. Algebra, 172, No. 3, 819–829 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  313. E. K. Hinson, “Paths of unimodular vectors,” J. Algebra, 142, No. 1, 58–75 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  314. E. K. Hinson, “Word length in elementary matrices,” J. Algebra, 142, No. 1, 76–80 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  315. E. K. Hinson, “On Vaserstein’s power operation on elementary orbits,” Comm. Algebra (2011).

    Google Scholar 

  316. Hua Lokeng and I. Reiner, “Automorphisms of the unimodular group,” Trans. Amer. Math. Soc., 71, 331–348 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  317. J. Huebschmann, “Stem extensions of the infinite general linear group and large Steinberg groups,” Lecture Notes Math., 966, 108–111 (1980).

    Article  MathSciNet  Google Scholar 

  318. J. E. Humphreys, “On the automorphisms of infinite Chevalley groups,” Canad. J. Math., 21, No. 1, 908–911 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  319. J. Hurrelbrink, “Endlich präsentierte arithmetische Gruppen und K2 über Laurent-Polynomringen,” Math. Ann., 225, 123–129 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  320. J. Hurrelbrink, “The elements of K2 \( \left( {{{\mathbb{Z}}_S}} \right) \),” Manuscripta Math., 24, 173–177 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  321. J. Hurrelbrink, “Endlich präsentierte arithmetische Gruppen im Funktionenkörperfall,” Math. Arm., 225, No. 2, 123–129 (1977).

    MathSciNet  MATH  Google Scholar 

  322. J. Hurrelbrink, “On K2 \( \left( \mathcal{O} \right) \) and presentations of SL n \( \left( \mathcal{O} \right) \) in the real quadratic ease,” J. reine angew. Math., 319, 213–220 (1980).

    MathSciNet  MATH  Google Scholar 

  323. J. Hurrelbrink, “On the size of certain K-groups,” Comm. Algebra, 10, 1873–1889 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  324. J. Hurrelbrink, “On presentations of SL n \( \left( {{{\mathbb{Z}}_S}} \right) \),” Comm. Algebra, 11, No. 9, 937–947 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  325. J. Hurrelbrink and U. Rehmann, “Eine endliehe Präsentation der Gruppe G2 \( \left( \mathbb{Z} \right) \),” Math. Z., 141, 243–251 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  326. J. Hurrelbrink and U. Rehmann, “Zur endliche Präsentation von Chevalleygruppen über den euklidischen imaginär-quadratischen Zahlringen,” Arch. Math., 27, No. 1, 123–133 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  327. K. Hutchinson, “A new approach to Matsumoto’s theorem,” K-Theory, 4, No. 2, 181–200 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  328. K. Hutchinson, “Conditions under which K2 \( \left( {{{\mathcal{O}}_F}} \right) \) is not generated by Dennis–Stein symbols,” Acta Arithm., 89, 189–199 (1999).

    MathSciNet  MATH  Google Scholar 

  329. F. Ischebeck, “Hauptidealringe mit nichttrivialer SK1-Gruppe,” Arch. Math., 35, 138–139 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  330. H. Ishibashi, “Generators of a symplectic group over a local valuation domain,” J. Algebra, 53, No. 1, 125–128 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  331. H. lshibashi, “Generators of O n (V) over a quasi semiloeal semihereditary domain,” Comm. Algebra, 7, No. 10, 1043–1064 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  332. H. Ishibashi, “Generators of Sp n (V) over a quasi semilocal semihereditary domain,” Comm. Algebra. 7, No. 16, 1673–1683 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  333. H. Ishibashi, “Generators of U n (V) over a quasi sernilocal semihereclitary domain,” J. Algebra, 60, No. 1, 199–203 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  334. H. lshibashi, “Generators of Sp n (V) over a quasi semilocal semihereditary ring,” J. Pure Appl. Algebra, 22, No. 2, 121–129 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  335. H. Ishibashi, “Generators of orthogonal groups over valuation rings,” Canad. J. Math., 33, No. 1, 116–128 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  336. H. Ishibashi, “Structure of O(V) over full rings,” J. Algebra, 75, No. 1, 1–9 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  337. H. lshibashi, “Involutory expressions of elements in GL n \( \left( \mathbb{Z} \right) \) and SL n \( \left( \mathbb{Z} \right) \),” Linear Algebra Applic. 219, 165–177 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  338. D. G. James, “Unitary groups over local rings,” J. Algebra, 52, No. 2, 354–363 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  339. D. G. James, “Projective geometry over rings with stable range condition,” Linear Multilinear Algebra, 23, No. 4, 299–304 (1988).

    Article  MATH  Google Scholar 

  340. D. G. James, W. C. Waterhouse, and B. Weisfeiler, “Abstract homomorphisms of algebraic groups: problems and bibliography,” Commun. Algebra, 9, 95–114 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  341. W. Jehne, “Die Struktur der symplektischen Gruppen über lolcalen und dedekindsehen Ringen,” Sitzungber. Heidelberg Akad.Wiss., Math. Naturwiss, 3, 189–235 (1962/64).

    Google Scholar 

  342. G. A. Jones, “Congruence and noncongruence subgroups of the modular group: a survey,” London Math. Soc. Lect. Notes, 121, 223–234 (1986).

    Google Scholar 

  343. S. Jose and R. A. Rao, “A local global principle for the elementary unimodular veetor group,” Contemp. Math., 390, 119–125 (2005).

    Article  MathSciNet  Google Scholar 

  344. S. Jose and R. A. Rao. “A structure theorem for the elementary unimodular vector group,” Trans. Amer. Math. Soc., 358, No. 7, 3097–3112 (2005).

    Article  MathSciNet  Google Scholar 

  345. B. Kahn, “K2 d’un anneau Euclidien,” J. Pure Appl. Algebra, 34, 255–257 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  346. W. van der Kallen, “Le K2 des nombres duaux,” C. R. Acad. Sci. Paris, Ser. A–B, 1204–1207 (1971).

  347. W. van der Kallen, “The Schur multipliers of SL(3, \( \mathbb{Z} \)) and SL(4, \( \mathbb{Z} \)),” Math. Ann., 212, 47–49 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  348. W. van der Kallen, “lnjective stability for K2,” Lecture Notes Math., 551, 77–154 (1976).

    Article  Google Scholar 

  349. W. van der Kallen, “Another presentation for Steinberg groups,” Indag. Math., 39, No. 4, 304–312 (1977).

    MathSciNet  Google Scholar 

  350. W. van der Kallen, “The K2 of rings with many units,” Ann. Sci. École Norm. Sup., 4éme Sér., 10, 473–515 (1977).

  351. W. van der Kallen, “Homology stability for linear groups,” Invent. Math., 60, 269–295 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  352. W. van der Kallen, “Stability for K2 of Dedekind rings of arithmetic type,” Lecture Notes Math., 854, 217–248 (1981).

    Article  Google Scholar 

  353. W. van der Kallen, “SL3 \( \left( {\mathbb{C}\left[ x \right]} \right) \) does not have bounded word length,” Springer Lecture Notes Math., 966, 357–361 (1982).

    Article  Google Scholar 

  354. W. van der Kallen, “A group structure on certain orbit sets of unimodular rows,” J. Algebra, 82, 363–397 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  355. W. van der Kallen, “Vaserstein’s prestabilization theorem over commutative rings,” Comm. Algebra. 15, No. 3, 657–663 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  356. W. van der Kallen, “A module structure on certain orbit sets of unimodular rows,” J. Pure Appl. Algebra, 57, No. 3, 281–316 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  357. W. van der Kallen, “Presenting K2 with generic symb0ls,” in: Algebraic K-theory: Connections with Geometry and Topology (1989), pp. 509–516.

  358. W. van der Kallen, “From Mennicke symbol to Euler class groups,” in: Algebra, Arithmetic, and Geometry (Mumbai, 2000), Mumbai (2002), pp. 341–354.

  359. W. van der Kallen, H. Maazen, and J. Stienstra, “A presentation of some K2(n, R),” Bull. Amer. Math. Soc., 81, 934–936 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  360. W. van der Kallen, B. Maagurn, and L. N. Vaserstein, “Absolute stable rank and Witt cancellation for noncommutative rings,” Invent. Math., 91, 543–557 (1988).

    Article  MathSciNet  Google Scholar 

  361. W. van der Kallen and M. R. Stein, “On the Schur multiplier of Steinberg and Chevalley groups over commutative rings,” Math. Z., 155, 83–94 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  362. W. van der Kallen and J. Stienstra, “The relative K2 of truncated polynomial rings,” J. Pure Appl. Algebra, 34, 277–289 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  363. I. Kaplansky, “Elementary divisors and modules,” Trans. Amer. Math. Soc., 66, 464–491 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  364. M. Kassabov, “Kazhdan constants for SL n \( \left( \mathbb{Z} \right) \),” Int. J. Alg. Comput., 15, No. 5–6, 971–995 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  365. M. Kassabov and N. Nikolov, “Universal lattices and property tau,” Invent. Math., 165, 209–224 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  366. M. Kassabov and M. Sapir, “Nonlinearity of matrix groups,” J. Topol. Anal., 1, No. 3, 251–260 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  367. S. A. Katre, R. A. Rao, and D. N. Sheth, “Solving linear systems via Pfaffians,” Linear Algebra Applic., 430, 968–975 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  368. K. Keller, “Nieht endlich erzeugbare arithmetische Gruppen über Funktioncnkorper,” Thesis Univ. Frankfurt (1980).

  369. M. Kervaire, “Multiplicateurs de Schur et K-theory,” in: Essays on Topology and Related Topics, Mém. dérliés à G. de Rham, Springer-Verlag, Berlin et al. (1970). pp. 212–225.

  370. F. Keune, “(t2 - t)-reciprocities of the affine line and Matsumoto’s theorem,” Invent. Math., 28, 185–192 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  371. F. Keune, “The relativisation of K2,” J. Algebra, 54, No. 1, 159–177 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  372. F. Keune. “Another presentation for the K2 of a local domain,” J. Pure Appl. Algebra, 22, 131–141 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  373. F. Keune, “The K2 of a. 1-fold stable ring,” Lecture Notes Math., 1046, 193–228 (1984).

    Article  MathSciNet  Google Scholar 

  374. G. Kiralis, S. Krstić, and J. McCool, “Finite presentability of Φ n (G), GL n (\( \mathbb{Z} \) G) and their elementary subgroups and Steinberg groups,” Proc. London Math. Soc., 73, No. 3, 575–622 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  375. F. Kirchheimer, “Die Normalteiler der symplektisehen Gruppen über beliebigen lokalen Ringen,” J. Algebra, 50, 228–241 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  376. F. Kirchheimer, “Über explizite Präsentation Hilbertscher Modulgruppen zu totalreellen Körpern der Klassenzahl eins,” J. reine angew. Math., 321, 120–137 (1981).

    MathSciNet  MATH  Google Scholar 

  377. F. Kirchheimer and J. Wolfart, “Explizite Präsentation gewisser Hilbertscher Modulgruppen durch Ermagende und Relationen,” J. reine angew. Math., 315, 139–173 (1980).

    MathSciNet  MATH  Google Scholar 

  378. B. Kirkwood and B. McDonald, “The Witt ring of a. full ring,” J. Algebra, 64, No. 1, 148–166 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  379. B. Kirkwood and B. McDonald, “The orthogonal and the special orthogonal groups over a full ring,” J. Algebra, 68, No. 1, 121–143 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  380. B. Kirkwood and B. McDonald, “The symlectic group over a ring with one in its stable range,” Pacific J. Math., 92, No. 1, 111–125 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  381. S. Klasa, “On Steinberg groups,” Lecture Notes Math., 353, No. 1, 131–138 (1973).

    Article  MathSciNet  Google Scholar 

  382. W. Klingenberg, “Linear groups over local rings,” Bull. Amer. Math. Soc., 66, 294–296 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  383. W. Klingenberg, “Lineare Gruppen über lokalen Ringen,” Amer. J. Math., 83, No. 1, 137–153 (1961).

    Article  MathSciNet  Google Scholar 

  384. W. Klingenberg, “Lineare Gruppen über verallgemeinernen Bewertungsringen,” Abh. Math. Semin. Univ. Hamburg., 25, No. 1–2, 23–35 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  385. W. Klingenberg, “Projektive Geometrie und lineare Algebra über verallgemeinernen Bewertungsringen,” in: Proceedings of the Colloquim on Algebra, Topology, Foundations of Geometry, London, (1962), pp. 99–107.

  386. W. Klingenberg, “Die Struktur der linearen Gruppen über einem niehtkommutativen lokalen Ring,” Arch. Math., 13, 73–81 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  387. W. Klingenberg, “Symplectic groups over local rings,” Amer. J. Math., 85, No. 2, 232–240 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  388. A. Klyachko, “Automorphisms and isomorphisms of Chevalley groups and algebras,” J. Algebra, 322, 2608–2619 (2010).

    Article  MathSciNet  Google Scholar 

  389. M. Kneser, “Normal subgroups of integral orthogonal groups,” Lecture Notes Math., 108, 67–71 (1969).

    Article  MathSciNet  Google Scholar 

  390. M. Kneser, “Normalteiler ganzzahliger Spingruppen,” J. reine angew. Math., 311/312, 191–214 (1979).

    MathSciNet  Google Scholar 

  391. M. Kneser, “Erzeugung ganzzahliger orthogonaler Gruppen dureh Spiegelungen,” Math. Ann., 255, No. 4, 453–462 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  392. K. P. Knudson, “The homology of SL2(F[t, t -1]),” J. Algebra, 180, 87–101 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  393. K. P. Knudson, “The homology of special linear groups over polynomial rings,” Ann. Sci. École Norm. Sup. 4-eme Ser., 30, No, 3, 385–415 (1997).

    MathSciNet  MATH  Google Scholar 

  394. K. P. Knudson, “Unstable homotopy invariance and the homology of SL2(\( \mathbb{Z} \)[t]),” J. Pure Appl. Algebra, 148, 255–266 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  395. K. P. Knudson, “Homology and finiteness properties of SL2 (\( \mathbb{Z} \)[t, t -1]),” Algebr. Geom. Topol., 8, 2253–2261 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  396. K, P. Knudson, “Congruenee subgroups and twisted eohomology of SL n (F[t]). I, II,” J. Algebra 207, No, 2, 695–721 (1998); Comm. Algebra 29, No. 12, 5465–5475 (2001).

  397. M.-A. Knus, Quadratic and Hermitian Forms Ouer Rings, Springer Verlag, Berlin et al. (1991).

  398. M. Kolster, “On injective stability for K2,” Lecture Notes Math., 966, 128–168 (1982).

    Article  MathSciNet  Google Scholar 

  399. M. Kolster, “Improvement of K2-stability under transitive actions of elementary groups,” J. Pure Appl. Algebra, 24, 277–282 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  400. M. Kolster, “General symbols and presentations of elementary linear groups,” J. reine angew. Math., 353, 132–164 (1984).

    MathSciNet  MATH  Google Scholar 

  401. M. Kolster, “K2 of noncommutative local rings,” J. Algebra, 95, No. 1, 173–200 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  402. S. Krstić and J. McCool, “The nonfinite presentability of IA(F 3) and GL n (Int[t, t -1],” Invent. Math., 129, 595–606 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  403. S. Krstić and J. McCool, “Presenting GL n (kT〉),” J. Pure Appl. Algebra, 141, 175–183 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  404. M. Kruserneyer, “Fundamental groups, algebraic K-theory, and a problem of Abjyankar,” Invent. Math., 19, 15–47 (1973).

    Article  MathSciNet  Google Scholar 

  405. M. Krusemeyer, “Skewly completable rows and a theorem of Swan and Towber,” Comm. Algebra, 4, No, 4, 657–663 (1975).

    MathSciNet  Google Scholar 

  406. S. Krutelevich, “Jordan algebras, exceptional groups and quadratic composition,” J. Algebra, 314, 924–977 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  407. N. H. J. Lacroix, “Two-dimensional linear groups over local rings,” Canad. J. Math., 21, 106–135 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  408. N. H. J. Lacroix and C. Levesque, “Sur les sous-groupes normaux de SL2 sur un anneau local,” Canad. Math. Bull., 26, 209–219 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  409. T. J. Laffey, “Expressing unipotent matrices over rings as products of involutions,” Irish Math. Soc. Bull., No. 40, 24–30 (1998).

    MathSciNet  MATH  Google Scholar 

  410. J. Landin and I. Reiner, “Automorphisms of the general linear group over a principal ideal domain,” Ann. Math., 65, 519–526 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  411. J. Landin and l. Reiner, “Automorphisms of the two-dimensional general linear group over a Euclidean ring,” Proc. Amer. Math. Soc., 9, 209–216 (1958).

    MathSciNet  MATH  Google Scholar 

  412. W. G. Leavitt, “Modules without invariant basis number,” Proc. Amer. Math. Soc., 8, 322–328 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  413. W. G. Leavitt, “The module type of a ring,” Trans. Amer. Math. Soc., 103, 113–130 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  414. R. Lee and R. Szczarba, “On the homology and cohomology of congruence subgroups,” Invent. Math., 33, 15–53 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  415. H. W. Lenstra, “K 2 of a global field consists of symbols,” Lecture Notes Math., 551, 69–73 (1976).

    Article  MathSciNet  Google Scholar 

  416. H. W. Lenstra, “Grothendieck groups of Abelian group rings,” J. Pure Appl. Algebra, 20, 173–193 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  417. A. Leutbecher, “Euklidischer Algorithmus und die Gruppe GL2,” Math. Ann., 231, 269–285 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  418. Fuan Li, “The structure of symplectic group over arbitrary commutative rings,” Acta Math. Sinica (N. S.) 3, No. 3, 247–255 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  419. Fuan Li, “Local behaviour of systems (ϕ, α, σ),” Kexue Tongbao, 33, 1445–1447 (1988). (in Chinese)

  420. Fuan Li, “The structure of orthogonal groups over arbitrary commutative rings,” Chinese Ann. Math., Ser. B, 10, No. 3, 341–350 (1989).

    MathSciNet  MATH  Google Scholar 

  421. Fuan Li. “Finite presentability of Steinberg groups over group rings,” Acta Math. Sinica, New Series, 5, No. 4, 297–301 (1989).

    Article  MATH  Google Scholar 

  422. Fuan Li, “Homological meaning of systems (ϕ, α, σ),” Acta Math. Sinica, 7, No. 4, 348–353 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  423. Fuan Li and Zunxian Li, “Automorphisms of SL3 (R), GL3 (R),” Contemp. Math., 82, 47–52 (1984).

    Article  Google Scholar 

  424. Fuan Li and Zunxian Li, “Isomorphisms of GL3 over commutative rings,” Scientia Sinica, Ser. A, 31, 7–14 (1988).

    MATH  Google Scholar 

  425. Fuan Li and Mulan Liu, “Generalized sandwich theorem,” K-Theory, 1, 171–184 (1987).

    Article  MathSciNet  Google Scholar 

  426. Fuan Li and Hongshuo Ren, “The automorphisms of two-dimensional linear groups over commutative rings,” Chinese Ann. Math., 10B, No. 1, 50–57 (1989).

    MathSciNet  Google Scholar 

  427. B. Liehl. "On the group SL2 over orders of arithmetic type,” J. reine angew. Math., 323, 153–171 (1981).

    MathSciNet  MATH  Google Scholar 

  428. B. Liehl, “Besehränkte Wortlänge in SL2,” Math. Z., 186, 509–524 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  429. L. Lifschitz and A. Rapinchuk, “On abstract homomorphisms of Chevalley groups with nonreductive image. I,” J. Algebra, 242, No. 1, 374–399 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  430. Zongzhu Lin, “The isomorphism of linear groups over local rings,” Acta Math. Sinica, New Series, 27, No. 4, 528–531 (1984).

    MATH  Google Scholar 

  431. Shaowu Liu and Luqun Wang, “Homomorphisms between symplectic groups,” Chinese Ann. Math., Ser. B, 14, No. 3, 287–296 (1993).

    MathSciNet  MATH  Google Scholar 

  432. J. L. Loday, “Cohomologie et groupe de Steinberg relatifs,” J. Algebra, 54, No. 1, 178–202 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  433. D. Loukanidis and V. K. Murty, “Bounded generation for SL n (n ≥ 2) and Sp n (n ≥ 1),” Preprint (1995).

  434. A. W. Lubotzky, “Free quotients and the congruence kernel of SL2,” J. Algebra, 77, 411–418 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  435. A. Yu. Luzgarev, A. V. Stepanov, and N. A. Vavilov, “Calculations in exceptional groups over rings,” Zap. Nauch. Semin. POMI, 373, 48–72 (2009).

    Google Scholar 

  436. H. Maazen, “Homology stability for the general linear group,” Ph. D. Thesis, Utrecht (1979).

  437. H. Maazen and J. Stienstra, “A presentation for K 2 of split radical pairs,” J. Pure Appl. Algebra, 10, 271–294 (1977).

    Article  MathSciNet  Google Scholar 

  438. B. A. Magurn, “SK1 of dihedral groups,” J. Algebra, 51, No. 2, 399–415 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  439. B. A. Magurn, “Explicit K 1 of some modular group rings,” J. Pure Appl. Algebra, 206, 3–20 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  440. B. A. Magurn, van der W. Kallen, and L. N. Vaserstein, “Absolute stable rank and Witt cancellation for noncommutative rings,” Invent. Math., 91, 525–542 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  441. K. E. Martin, “Orthogonal groups over \( \Re \)((π)),” Amer. J. Math., 95, 59–79 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  442. A. W. Mason, “A note on subgroups of GL(n, A) which are generated by commutators,” J. London Math. Soc., 11, 509–512 (1974).

    Article  Google Scholar 

  443. A. W. Mason, “On subgroups of GL(n, A) which are generated by commutators. II,” J. reine angew. Math., 322, 118–135 (1981).

    MathSciNet  MATH  Google Scholar 

  444. A. W. Mason, “A further note on subgroups of GL(n, A) which are generated by commutators,” Arch. Math., 37, No. 5, 401–405 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  445. A. W. Mason, “On nonnormal subgroups of GL n (A) which are normalized by elementary matrices,” Ill. J. Math., 28, 125–138 (1984).

    MATH  Google Scholar 

  446. A. W. Mason, “Anomalous normal subgroups of SL2(K[x]),” Quart. J. Math., 36, 345–358 (1985).

    Article  MATH  Google Scholar 

  447. A. W. Mason, “Standard subgroups of GL2(A),” Proc. Edin. Math. Soc., 30, 341–349 (1987).

    Article  MATH  Google Scholar 

  448. A. W. Mason, “On GL2(A) of a local ring in which 2 is not a unit,” Canad. Math. Bull., 30, 165–176 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  449. A. W. Mason, “Free quotients of congruence subgroups of SL2 over a Dedekind ring of arithmetic type contained in a function field,” Math. Proc. Cambridge Phil. Soc., 101, 421–429 (1987).

    Article  MATH  Google Scholar 

  450. A. W. Mason, “Free quotients of congruence subgroups of SL2 over a coordinate ring,” Math. Z., 198, 39–51 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  451. A. W. Mason, “On GL2(A) of a local ring in which 2 is not a unit. Il,” Comm. Algebra, 17, 511–551 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  452. A. W. Mason, “Nonstandard, normal subgroups and nonnormal, standard subgroups of the modular group,” Canad. Math. Bull., 32, No. 1, 109–113 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  453. A. W. Mason, “Subnormal subgroups of E n (R) have no free nonabelian quotients, when n ≥ 3,” Proc. Edinburgh Math. Soc., 119, No. 1, 113–119 (1991).

    Article  Google Scholar 

  454. A. W. Mason, “The order and level of a subgroup of GL2 over a Dedekind ring of arithmetic type,” Proc. Royal Soc. Edinburgh, Sect. A, 119, No. 3–4, 191–212 (1991).

    Article  MATH  Google Scholar 

  455. A. W. Mason, “Normal subgroups of SL2(k[t]) with or without free quotients,” J. Algebra, 150, No. 2, 281–295 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  456. A. W. Mason, “Congruence hulls in SL n J. Pure Appl. Algebra, 89, No. 3, 255–257 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  457. A. W. Mason, “Quotients of the congruence kernels of SL2 over arithmetic Dedekind domains,” Israel J. Math., 91, 77–91 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  458. A. W. Mason, “Unipotent matrices, modulo elementary matrices, in SL2 over a coordinate ring,” J. Algebra, 203, 134–155 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  459. A. W. Mason, “The generalization of Nagao’s theorem to other subrings of the rational function field,” Comm. Algebra, 31, No. 11, 5199–5242 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  460. A. W. Mason, “Stabilziers of edges in general linear groups acting on trees,” J. Group Theory, 4, 97–108 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  461. A. W. Mason and A. Schweizer, “Nonstandard automorphisms and noncongruence subgroups of SL2 over Dedekind domains contained in function fields,” J. Pure Appl. Algebra, 205, 189–209 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  462. A. W. Mason and W. W. Stothers, “On subgroups of GL(n, A) which are generated by commutators,” Invent. Math., 23, 327–346 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  463. H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. École Norm. Sup., 2, No. 4, 1–62 (1969).

    MATH  Google Scholar 

  464. B. R. McDonald, Geometric Algebra Over Local Rings, Marcel Dekker, N.Y. (1976).

    MATH  Google Scholar 

  465. B. R. McDonald, “Automorphisms of GL n (R),” Trans. Amer. Math. Soc., 215, 145–159 (1976).

    MathSciNet  MATH  Google Scholar 

  466. B. R. McDonald, “Automorphisms of GL n (R),” Trans. Amer. Math. Soc., 246, 155–171 (1978).

    MathSciNet  MATH  Google Scholar 

  467. B. R. McDonald, “GL2 of a ring with many units,” Comm. Algebra, 8, 869–888 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  468. B. R. McDonald, “Projectivities for rings with many units,” Comm. Algebra, 9, N o. 2, 195–204 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  469. B. R. McDonald, “Aut(GL2) for rings with many units,” Comm. Algebra, 9, No. 2, 205–220 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  470. B. R. McDonald, Linear Algebra Over Commutative Rings, Marcel Dekker, N.Y. (1984).

    MATH  Google Scholar 

  471. B. R. McDonald, “Metric geometry over local global commutative rings,” in: Rings and Geometry (1985), pp. 391–415.

  472. B. R. McDonald and B. Hershberger, “The orthogonal group over a full ring,” J. Algebra, 51, 536–549 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  473. G. McHardy, “Endliche und fast-endliche Präsentierbarkeit einiger arithmetischer Gruppen,” Thesis Univ. Frankfurt (1982).

  474. L. McQueen and D. R. McDonald, “Automorphisms of the symplectic group over a local ring,” J. Algebra, 30, 485–495 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  475. P. Menal and J. Moncasi, “On regular rings with stable range 2,” J. Pure Appl. Algebra, 24, 25–40 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  476. P. Menal and J. Moncasi, “K1 of von Neumann regular rings,” J. Pure Appl. Algebra, 33, No. 3, 295–312 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  477. P. Menal and L. N. Vaserstein, “On subgroups of GL2 over noncommutative local rings which are normalized by elementary matrices,” Math. Ann., 285, 221–231 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  478. P. Menal and L. N. Vaserstein, “On subgroups of GL2 over Banach algebras and von Neumann regular rings which are normalized by elementary matrices,” J. Pure Appl. Algebra, 64, No. 2, 149–162 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  479. P. Menal and L. N. Vaserstein, “On the structure of GL2 over stable range one rings,” J. Algebra, 136, No. 1, 99–120 (1991).

    Article  MathSciNet  Google Scholar 

  480. J. Mennicke, “A remark on the congruence subgroup problem,” Math. Scand., 86, 206–222 (2000).

    MathSciNet  MATH  Google Scholar 

  481. J. S. Milne, Algebraic Granps and Arithmetic Groups, http://www.jmi1ne.org/math/ (2006).

  482. B. Mirzaii, “Homology of classical groups and K-theory,” Ph. D. Thesis, Utrecht Univ., (2005).

  483. B. Mirzaii, “Homology stability for unitary groups. II,” K-Theory, 36, No. 3–4, 305–326 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  484. B. Mirzaii, “Homology of GL n over algebraically closed fields,” J. Landon Math. Soc., 76, 605–621 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  485. B. Mirzaii, “Homology of GL n : injectivity conjecture for GL4,” Math. Ann., 304, No. 1, 159–184 (2008).

    MathSciNet  Google Scholar 

  486. B. Mirzaii, “Third homology of general linear groups,” J. Algebra, 320, No. 5, 1851–1877 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  487. B. Mirzaii, “Bloch–Wigner theorem over rings with many units,” arXiv:0807.2039v2 [matl1.KT] (2009).

  488. B. Mirzaii, “A note on the third cohomology of GL2,” arXiv:0907.0876v1 [rnath.KT] (2009).

  489. B. Mirzaii and W. van der Kallen, “Homology stability for symplectic groups,” arXiv:math/0110163v1 [math.KT] (2001).

  490. B. Mirzaii and W. van der Kallen. “Homology stability for unitary groups,” Documenta Math., 7, 143–166 (2002).

    MATH  Google Scholar 

  491. J. Morita, “On the group structure of rank one K2 of some \( {{\mathbb{Z}}_S} \),” Bull. Soc. Math. Belg., 42, 561–575 (1990).

    MATH  Google Scholar 

  492. D. W. Morris, “Bounded generation of SL(n, A),” New York J. Math., 13, 383–421 (2007).

    MathSciNet  MATH  Google Scholar 

  493. K. N. Moss, “Homology of SL (n, \( \mathbb{Z}\left[ {\frac{1}{p}} \right] \)),” Duke Math. J., 47, No. 4, 803–818 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  494. T. Mulders, “Generating the tame and wild kernels by Dennis Stein symbols,” K-Theory, 5, 449–470 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  495. V. K. Murty, “Bounded and finite generation of arithmetic groups,” in: Number Theory (Halifax. 1994), Providence, RI, (1995), pp. 249–261.

  496. H. Nagao, “On GL2(R[x]),” J. Inst. Polytechn. Osaka City Univ., Ser. A, 10, 117–121 (1959).

    MathSciNet  Google Scholar 

  497. K. R. Nagarajan, M. P. Devaasahayam, and T. Soundararajan, “Products of three triangular matrices over commutative rings,” Linear Algebra Applic., 348, 1–6 (2002).

    Article  MATH  Google Scholar 

  498. M. Newman, Integral Matrices, Academic Press, N. Y. (1972).

    MATH  Google Scholar 

  499. M. Newman, “Matrix completion theorems,” Proc. Amer. Math. Soc., 94, 39–45 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  500. M. Newman, “Unimodular commutators,” Proc. Amer. Math. Soc., 101, 605–609 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  501. O. T. O’Meara, “Finiteness on SL n /TL n over Hasse domains for n ≥ 4,” Math. Z., 86, No. 4, 273–284 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  502. O. T. O’Meara, “On the finite generation of linear groups over Hasse domains,” J. reine angew. Math., 217, 79–108 (1965).

    MathSciNet  MATH  Google Scholar 

  503. O. T. O’Meara, “The automorphisms of the linear groups over any integral domain,” J. reine angew. Math., 223, 56–100 (1966).

    MathSciNet  MATH  Google Scholar 

  504. O. T. O’Meara, “The automorphisms of the standard symplectic group over any integral domain,” J. reine angew. Math., 230, 104–138 (1968).

    MathSciNet  MATH  Google Scholar 

  505. O. T. O’Meara, “The automorphisms of the orthogonal groups and their congruence subgroups over arithmetic domains,” J. reine angew. Math., 238, 169–206 (1969).

    MathSciNet  MATH  Google Scholar 

  506. O. T. O’Meara, “Group-theoretic characterization of transvections using CDC,” Math. Z., 110, 385–394 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  507. O. T. O’Meara, “The integral classical groups and their automorphisms,” Proc. Symp. Pure Math., 20, 76–85 (1971).

    MathSciNet  Google Scholar 

  508. O. T. O’Meara, “A general isomorphism theory for linear groups,” J. Algebra, 44, 93–142 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  509. O. T. O’Meara, “A survey of the isomorphism theory of the classical groups,” in: Ring Theory and Algebra. III, Dekker, N. Y. (1980), pp. 225–242.

  510. O. T. O’Meara and H. Zassenhaus, “The automorphisms of the linear congruence groups over Dedekind domains,” J. Number. Theory, 1, 211–221 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  511. A. A. Panin, “Intermediate semigroups are groups,” Semigroup Forum (2011).

  512. H. Park, “A realization algorithm for SL2(R[x 1,…x m ]) over the Euclidean domain,” SIAM J. Matrix Anal. Appl., 21, No. 1, 178–184 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  513. H. Park and C. Woodburn, “An algorithmic proof of Suslin’s stability theorem for polynomial rings,” J. Algebra, 178, No. 1, 277–298 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  514. V. M. Petechuk, “Isomorphisms between linear groups over division rings,” Canad. J. Math., 45, No. 5, 997–1008 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  515. V. M. Petechuk, “Stability structure of linear group over rings,” Mat. Studii, 16, No. 1, 13–24 (2001).

    MathSciNet  MATH  Google Scholar 

  516. A. Pilkington, “The E 2(R)-normalized subgroups of GL2(R). I, II,” J. Algebra, 172, No. 2, 584–611 (1995); 177, No. 3, 619–626.

  517. E. Plotkin, “Stability theorems for K-functors for Chevalley groups,” in: Proceeding of the Conference on Non-Assoeiatiue Algebras and Related Topics (Hiroshima 1990), World Sci., London et al. (1991), pp. 203–217.

  518. E. Plotkin, “On the stability of K1-functor for Chevalley groups of type E7,” J. Algebra, 210, 67–85 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  519. E. Plotkin, M. R. Stein, and N. Vavilov, “Stability of K-functors modeled on Chevalley groups, revisited,” (2011) to appear.

  520. B. Pollak, “On the structure of local orthogonal groups,” Amer. J. Math., 88, 763–780 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  521. B. Pollak, “Orthogonal groups over \( \mathbb{R} \)((π)),” Amer. J. Math., 89, 214–230 (1968).

    Article  MathSciNet  Google Scholar 

  522. J. Pomfret and B. R. McDonald, “Automorphisms of GL n (R), R a local ring,” Trans. Amer. Math. Soc., 173, 379–388 (1972).

    MathSciNet  MATH  Google Scholar 

  523. R. A. Rankin, The Modular Group and Its Subgroups, Lectures at Ramanujan Institute, Madras (1968).

  524. R. A. Rao, “An elementary transformation of a special unimodular vector to its top coefficient vector,” Proc. Amer. Math. Soc., 93, No. 1, 21–24 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  525. R. A. Rao, “The Bass–Quillen conjecture in dimension three but characteristic ≠ 2, 3 via a question of A. Suslin,” Invent. Math., 93, 609–618 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  526. R. A. Rao, “On some actions of stably elementary matrices on alternating matrices,” Preprint TIFR. (1989).

  527. R. A. Rao, “On completing unimodular polynomial vectors of length three,” Trans. Amer. Math. Soc., 325, No. 1, 231–239 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  528. R. A. Rao, “An abelian group structure on orbits of ‘unimodular squares’ in dimension 3,” J. Algebra, 210, 216–224 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  529. R. A. Rao and W. der Kallen, “Improved stability for SK1 and WNS d of nonsingular affine·algebra,” Astérisque, 85, 411–420 (1994).

    Google Scholar 

  530. A. Rapinchuk, “Congruence subgroup problem for algebraic groups: old and new,” Journées Arithmétiques, 1991 Astérisque, No. 209, 73–84 (1992).

  531. I. A. Rapinchuk, “On linear representations of Chevalley groups over commutative rings,” arXiv:1005.0422v1 [math.GR] (2010).

  532. N. S. Rege, “On certain classical groups over Hasse domains,” Math. Z., 102, 120–157 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  533. U. Rehmann, “Präsentationen von Chevalleygruppen über k[t],”’ Preprint Univ. Bielefeld (1975).

  534. U. Rehmann, “Zentrale Erweiterungen der speziellen linearen Gruppe eines Sehiefkörpers,” J. reine angew. Math., 301, 77–104 (1978).

    MathSciNet  MATH  Google Scholar 

  535. U. Rehmann, “Kommutatoren in GL n (D),” Lecture Notes Math., 778, 117–123 (1980).

    Article  Google Scholar 

  536. U. Rehmann, “Central extensions of SL2 over division rings and metaplectic problem,” Contemp. Math., 55, No. 2, 561–607 (1986).

    Article  MathSciNet  Google Scholar 

  537. U. Rehmann and C. Soulé, “Finitely presented groups of matriecs,” Lecture Notes Math., 551, 164–169 (1976).

    Article  Google Scholar 

  538. U. Relnnann and U. Stuhler, “On K2 of finite dimensional division algebras over arithmetical fields,” Invent. Math., 50, 75–90 (1975).

    Google Scholar 

  539. I. Reiner, “A new type of automorpliism ofthe general linear group over a. ring,” Ann. Math., 66, 461–466 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  540. C. Riehin, “The structure of symplectic group over a valuation ring,” Amer. J. Math., 88, 106–128 (1966).

    Article  MathSciNet  Google Scholar 

  541. C. R. Riehm, “Orthogonal groups over the integers of a local field. I, II,” Amer. J. Math., 88, 763–780 (1966); 89, 549–577 (1967).

  542. M. Roitman, “Completing unimodular rows to invertible matrices,” J. Algebra, 49, 206–211 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  543. M. Roitman, “On uniniodular rows,” Proc. Amer. Math. Soc., 95, 184–188 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  544. L. Rovven, Ring Theory (2011).

  545. A. Sasane, “Stable ranks of Banach algebras of operator-valued analytic functions.” Compl. Anal. Operator Theory, 3, 323–330 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  546. J.-P. Serre, “Amalgames et points fixes,” Lecture Notes Math., 372, 633–640 (1974).

    Article  Google Scholar 

  547. J. -P. Serre, Trees, Springer-Verlag, Berlin et al. (1980).

    Book  MATH  Google Scholar 

  548. Y. Shalom, “Bounded generation and Kazhdan property (T),” Inst. Hdutes Études Sei. Publ. Math., 90, 145–168 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  549. Y. Shalom, “Explicit Kazhdan constants for representations of seinisirnple and arithrnetic groups,” Ann. Inst. Fourier (Grenoble), 50, No. 3, 833–863 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  550. Y. Shalom, “The algebraisation of Kazhdan property (T),” in: International Congress of Mathematicians, 11, 1283–1310 (2006).

  551. R. W. Sharpe, “On the structure of the unitary Steinberg group,” Ann. Math., 96, No. 3, 444–479 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  552. R. W. Sharpe, “On the structure of the Steinberg group St(Λ),” J. Algebra, 68, 453–467 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  553. J. R. Silvester, "On the K2 of the free associative algebra,” J. Algebra, 26, 35–56 (1973).

    MathSciNet  MATH  Google Scholar 

  554. J. R. Silvester, “A presentation ofthe GL n of a semi-local ring,” Lecture Notes Math., 966, 244–260 (1982).

    Article  MathSciNet  Google Scholar 

  555. A. Sivatsky and A. Stepanov, “On the word length of cornrnutators in GL n (R).” K-theory, 17, 295–302 (1999).

    Article  MathSciNet  Google Scholar 

  556. Th. Skolem, Diophantisehe Gleichungen, Springer, Berlin (1938).

    Google Scholar 

  557. R. E. Solami, “The automorphisrns of certain subgroups of PGL n (V),” Ill. J. Math., 16, 330–348 (1972).

    Google Scholar 

  558. C. Soulé, “The cohomology of SL3 \( \left( \mathbb{Z} \right) \),” Topology, 17, 1–22 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  559. C. Soulé, “Presentation finie des groupes de Chevalley a coefficients dans un anneau,” Publ. Math. Univ. Paris. VII, 147–155 (1978).

  560. C. Soulé, “Chevalley groups over polynomial rings,” London Math. Soc. Lect. Notes, 36, 359–367 (1979).

    Google Scholar 

  561. C. Soulé, “An introduction to arithmetic groups,” in: Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin et al. (2007), pp. 247–276.

  562. S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups,” Contemp. Math., 55, II, 635–687 (1986).

  563. J. T. Stafford, “Stable structure of noncommutative Noetherian rings,” J. Algebra, 47, 244–267 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  564. J. T. Stafford, “On the stable range of right Noetherian rings,” Bull. London Math. Soc., 13, 39–41 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  565. J. T. Stafford, “Absolute stable rank and quadratic forms over nonconmiutative rings,” K-Theory, 4, 121–130 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  566. A. Stavrova, “Normal structure of maximal parabolic subgroups in Chevalley groups over commutative rings,” Algebra Coll., 16, No. 4, 631–648 (2009).

    MathSciNet  MATH  Google Scholar 

  567. M. R. Stein, “Relativising functors on rings and algebraic K-theory,” J. Algebra, 19, No. 1, 140–152 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  568. M. R. Stein, “Generators relations and coverings of Chevalley groups over comrnutative rings,” Amer. J. Math., 93, No. 4, 965–1004 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  569. M. R. Stein, “Stability theorems for K1, K2 and related functors modeled on Chevalley groups,” Japan J. Math., 4, No. 1, 77–108 (1978).

    MathSciNet  MATH  Google Scholar 

  570. M. R. Stein and R. K. Dennis, “K2 of radical ideals and serni-local rings revisited,” Lecture Notes Math., 342, 281–303 (1972).

    MathSciNet  Google Scholar 

  571. R. Steinberg, “Générateurs, relations et revêtements des groupes algébriques,” in: Colloque sur la Théorie des Groupes Algébriques (Bruxelles, 1962), Guthier-Villar, Paris (1962), pp. 113–127.

  572. R. Steinberg, “Some consequences of elementary relations of SL n ,” Contemp. Math., 45, 335–350 (1985).

    Article  Google Scholar 

  573. A. Stepanov, “Universal localization in algebraic groups,” http://alexe:i.stepanov.spb.ru/~publicat.html (2010) to appear.

  574. A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  575. A. Stepanov and N. Yavilov, “On the length of commutators in Chevalley groups,” Israel Math. J., 1–20 (2011).

  576. U. Stuliler, “Zur Frage der endlichen Präsentierbarkeit gewisser aritlimetiseher Gruppen im Funktionenkörperfall,” Math. Ann., 224, 217–232 (1976).

    Article  MathSciNet  Google Scholar 

  577. U. Stuhler, “Homological properties of certain arithmetic groups in the function Held case,” Invent. Math., 57, 263–281 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  578. A. A. Suslin, “Stability in algebraic K-theory,” Lecture Notes Math., 966, 304–333 (1982).

    Article  MathSciNet  Google Scholar 

  579. A. A. Suslin, “Mennicke symbols and their applications in the K-theory of fields,” Lecture Notes Math., 966, 334–356 (1982).

    Article  MathSciNet  Google Scholar 

  580. A. A. Suslin, “Homology of GL n , characteristic classes and Milnor’s K-theory,” Lecture Notes Math., 1046, 357–384 (1984).

    Article  MathSciNet  Google Scholar 

  581. K. Suzuki, “On the autornorphisms of Chevalley groups over p-adic integer rings,” Kumamato J. Sci., Math., 16, No. 1, 39–47 (1984).

    Google Scholar 

  582. R. G. Swan, “Generators and relations for certain special linear groups,” Bull. Amer. Math. Soc., 74, 576–581 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  583. R. G. Swan, “Generators and relations for certain special linear groups,” Adv. Math., 6, 1–77 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  584. R. G. Swan and L. N. Vaserstein, “On the absolute stable range of rings of continuous functions,” Contemp. Math., 55, No. 11, 689–692 (1986).

    Article  MathSciNet  Google Scholar 

  585. G. Taddei, “Invariance du sous-groupe symplectique élémentaire dans le groupe symplectique sur un anneau,” C. R. Acad. Sci Paris, Sér I, 295, No. 2, 47–50 (1982).

  586. G. Taddei, “Norrnalité des groupes élémentaire dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55 Part II, 693–710 (1986).

  587. Tang Guoping, “Hermitian groups and K-theory,” K-Theory, 13, No. 3, 209–267 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  588. Tang Xiangpu, “An Jianbei. The structure of symplectic groups over semi-local rings,” Acta Math. Sinica, New Series, 1, 1–15 (1985).

  589. O. l. Tavgen’, “Bounded generation of normal and twisted Chevalley groups over the rings of S-integers,” Contemp. Math., 131, No. 1, 409–421 (1992).

  590. J. Tits, "Homomorphismes et automorphismes “abstraits” de groupes algebriques et arithmetiques,” in: International Congress of Mathematics (Nice, 1970), Gauthier-Villars, Paris (1971), pp. 349–355.

  591. J. Tits, “Homomorphisms “abstraits” de groupes de Lie,” in: Convegno di Gruppi e Loro Rappresentazioni, INDAM (Roma, 1972). Academic Press, London (1974), pp. 479–499.

  592. J. Tits, “Systemes generateurs de groupes de eongruenees,” C. R. Acad. Sci. Paris, Sér. A, 283, 693–695 (1976).

  593. M. F. Trittler, “Die Normalteiler symplektischer Gruppen iiber Bewertungsringen mit einer Restklassenkörper-Charakteristik ≠ 2,” Manuscripta Math., 103, 117–134 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  594. R. Tuler, “Subgroups of SL2(Int) generated by elementary rnatrices,” Proc. Ray. Soc. Edinburgh, Ser. A, 88, No. 1–2, 43–47 (1981).

  595. L. N. Vaserstein, “On the normal subgroups of the GL n of a ring,” Springer Lecture Notes Math., 854, 454–465 (1981).

    MathSciNet  Google Scholar 

  596. L. N. Vaserstein, “Bass’s first stable range condition,” J. Pure Appl. Algebra, 34, No. 2–3, 319–330 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  597. L. N. Vaserstein, “Classical groups over rings,” Canad. Math. Soc. Conf. Proc., 4, 131–140 (1984).

    MathSciNet  Google Scholar 

  598. L. N. Vaserstein, “Normal subgroups of the general linear groups over von Neumann rings,” Proc. Amer. Math. Soc., 96, No. 2, 209–214 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  599. L. N. Vaserstein, “Normal subgroups of the general linear groups over Banach algebras,” J. Pure Appl. Algebra, 41, 99–112 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  600. L. N. Vaserstein, “An answer to the question of M. Newman on rnatrix cornpletion,” Proc. Amer. Math. Soc., 97, No. 2, 189–196 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  601. L. N. Vaserstein, “The subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 99, 425–431 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  602. L. N. Vaserstein, “Operations on orbits of unirnorlular vectors,” J. Algebra, 100, 456–461 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  603. L. N. Vaserstein, “On normal subgroups of Chevalley groups over eommutative ririgs,” Tôhoku Math. J., 36, No. 5, 219–230 (1986).

    Article  MathSciNet  Google Scholar 

  604. L. N. Vaserstein, “Computation of K1 via Mennicke symbols,” Comm. Algebra, 15, 611–656 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  605. L. N. Vaserstein, “Subnormal subgroups of the general linear groups over Banach algebras,” J. Pure Appl. Algebra, 52, 187–195 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  606. L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings,” Amer. J. Math., 110, No. 5, 955–973 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  607. L. N. Vaserstein, “Reduction of a matrix depending on parameters to a diagonal form by addition operators,” Proc. Amer. Math. Soc., 103, No. 3, 741–746 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  608. L. N. Vaserstein, “Normal subgroups of classical groups over rings and gauge groups,” Contemp. Math., 83, 451–459 (1989).

    Article  MathSciNet  Google Scholar 

  609. L. N. Vaserstein, “Norrnal subgroups of symplectic groups over rings,” K-Theory, 2, No. 5, 647–673 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  610. L. N. Vaserstein, “Linear algebra and algebraic K-theory,” Contemp. Math., 82, 191–197 (1989).

    Article  MathSciNet  Google Scholar 

  611. L. N. Vaserstein, “The subnormal structure of general linear groups over rings,” Math. Proc. Cambridge Phil. Soc., 108, No. 2, 219–229 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  612. L. N. Vaserstein, “On normal subgroups of GL2 over rings with many units,” Compositio Math., 74, No. 2, 157–164 (1990).

    MathSciNet  MATH  Google Scholar 

  613. L. N. Vaserstein, “On the VVhitehead determinant for semi-local rings,” J. Algebra, 283, 690–699 (2005).

    Google Scholar 

  614. L. N. Vaserstein, “Polynomial parametrization for the solution of Diophantine equations and arithmetic groups,” Ann. Math., 171, No. 2, 979–1009 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  615. L. N. Vaserstein and B. A. Magurn, “Prestabilization for K1 of Banach algebras,” Linear Algebra Appl., 95, 69–96 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  616. L. N. Vaserstein and E. Wheland, “Factorization of invertible matrices over rings of stable rank one,” J. Austral Math. Soc. Ser. A, 48, No. 3, 455–460 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  617. L. N. Vaserstein and E. Wheland, “Commutators and companion matrices over rings of stable rank 1,” Linear Algebra Appl., 142, 263–277 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  618. L. N. Vascrstein and You Hong, “Normal subgroups of classical groups over rings,” J. Pure Appl. Algebra, 105, No. 1, 93–106 (1995).

    Article  MathSciNet  Google Scholar 

  619. N. Vavilov, “A note on the subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 107, No. 2, 193–196 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  620. N Vavilov, “Structure of Cheyalley groups over commutative rings,” in: Proceedings of the Conference on Non-Associotibe Algebros ond Related Topics (Hiroshima – 1990), World Sci., London et al. (1991), pp. 219–335.

  621. N. Vavilov, “Intermediate subgroups in Chevalley groups,” in: Proceedings of the Conference on Groups of Lie Type and Their Geometries (Como – 1993), Cambridge Univ. Press (1995), pp. 233–280.

  622. N. Vayilov, “A third look at weight diagrams,” Rendiconti del Sem. Mat. Univ. Padova, 204, No. 1, 201–250 (2000).

    Google Scholar 

  623. N. Vavilov, “An A3-proof of structure theorems for Chevalley groups of types E6 and E7,” Intern. J. Algebra Comput., 17, No. 5–6, 1–16 (2007).

    MathSciNet  Google Scholar 

  624. N. Vavilov and E. Plotkin, “Chevalley groups over commutative rings. l. Elementary calculations,” Acta Applicandae Math., 45, No. 1, 73–113 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  625. F. D. Veldkamp, “Projective planes over rings of stable rank 2,” Geom. Dedic., 11, 285–308 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  626. F. D. Veldkamp, “Projective geometry over finite rings,” Quaderni del Semin. di Gcorn. Combinat. Univ. Rama I “La Snpienza”, No. 92, 1–39 (1989).

    Google Scholar 

  627. K. Vogtmann, “Spherical posets and homology stability for O n,n Topology, 20, No. 2, 119–132 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  628. T. Vorst, “The general linear group of polynomial rings over regular rings,” Comm. Algebra, 9, 499–509 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  629. J. B. Wagoner, “On K2 of the Laurent polynomial ring,” Amer. J. Math., 93, 123–138 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  630. J. B. Wagoner, “Stability for homology of the general linear group of a local ring,” Topology, 15, 417–423 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  631. Zhexian Wan, “On the automorphisms of linear groups over a noncommutative Euclidean ring of characteristic ≠ 2,” Sci. Record, 1, No. 1, 5–8 (1957).

    MathSciNet  MATH  Google Scholar 

  632. Zhexian Wan, “On the automorphisms of linear groups over a noncommutative principal ideal domain of characteristic ≠ 2,” Sci. Sinica, 7, 885–933 (1958).

    MathSciNet  MATH  Google Scholar 

  633. Zhexian Wan, “Some recent progress on classical groups in China,” Contemp. Math., 82, 221–230 (1989).

    Article  Google Scholar 

  634. Zhexian Wan and Hongshuo Ren, “Automorphisms of two-dimensional linear groups over local rings of characteristic 2,” Chinese Ann. Math., 4, No. 4, 419–434 (1983).

    MathSciNet  Google Scholar 

  635. Zhexian Wan and Xiaolong Wu, “On the second commutator subgroup of PGL2(Int),” Math. Rep. Acad. Sci. Canada, 11, No. 6, 303–308 (1980).

    Google Scholar 

  636. Chunsen Wang, “Automorphisms of linear groups over a class of rings,” Chinese Ann. Math., 4, No. 2, 263–269 (1983).

    MathSciNet  MATH  Google Scholar 

  637. Luqun Wang, “On the standard form of normal subgroups of linear groups over rings,” Chinese Ann. Math., 5, No. 2, 229–238 (1984).

    MathSciNet  MATH  Google Scholar 

  638. Luqun Wang and Yongzheng Zhang, “GL2 over full rings,” Chinese Ann. Math., 8, No. 4, 434–439 (1987).

    MathSciNet  MATH  Google Scholar 

  639. Renfa. Wang and Hong You, “The structure of symplectic groups over semi-local rings,” Chinese Ann. Math. Ser. A, 5, 33–40 (1984) (in Chinese).

  640. W. P. Wardlaw, “Defining relations for certain integrally parametrized Chevalley groups,” Pacif. J. Math., 40, 235–250 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  641. W. C. Waterhouse, Introduction to Affine Group Schemes, Springer-Verlag, N.Y. et al. (1979).

    Book  MATH  Google Scholar 

  642. W. C. Waterhouse, “Automorphisms of GL n (R),” Proc. Amer. Math. Soc., 79, 347–351 (1980).

    MathSciNet  MATH  Google Scholar 

  643. W. C. Waterhouse, “Automorphisms of quotients of Π GL(n i ),” Pacif. J. Math., 102, 221–233 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  644. W. C. Waterhouse, “Automorphisms of det(X ij ): the group scheme approach,” Adv. Math., 65, No. 2, 171–203 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  645. C. Weibel, “Mennicke-type symbols for relative K2,” Lecture Notes Math., 1046, 451–464 (1984).

    Article  MathSciNet  Google Scholar 

  646. B. Weisfeiler, “On abstract hoinorphisms of anisotropic algebraic groups over real closed fields,” J. Algebra, 60, 485–519 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  647. B. Weisfeiler, “Monomorphisms between subgroups of groups of type G2,” J. Algebra, 68, 306–334 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  648. B. Weisfeiler, “Abstract isomorphisms of simple algebraic groups split by quadratic; extension,” J. Algebra, 68, 335–368 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  649. B. Weisfeiler, “Abstract homomorphisms of big subgroups of algebraic groups,” in: Topics in the Theory of Algebraic Groups, Notre Dame Math. Lectures (1982), pp. 135–181.

  650. M. Wendt, “On fibre sequence in motivic homotopy theory,” Thesis Univ. Leipzig (2007).

  651. M. Wendt, “\( {{\mathbb{A}}^1} \)-homotopy of Chevalley groups,” J. K-Theory, 5, No. 2, 245–287 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  652. K. Weston, “On nilpotent class 2 groups and the Steinberg groups St(3, R),” Arch. Math., 45, 207–210 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  653. J. S. Wilson, “The normal and subnormal structure of general linear groups,” Proc. Cambridge Philos. Soc., 71, 163–177 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  654. D. Witte, “Products of similar matrices,” Proc. Amer. Math. Soc., 126, No. 4, 1005–1015 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  655. D. Wright, “The amalgamated free product structure of GL2 (k[x 1,…,x n ]),” Bull. Amer. Math. Soc., 82, No. 5, 724–726 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  656. D. Wright, “The amalgamated free product structure of GL2(k[X 1,…,X n ]) and the weak Jacobian theorem for two variables,” J. Pure Appl. Algebra, 12, No. 3, 235–251 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  657. S. Yagunov, “On the homology of GL n and the higher pre-Bloch groups,” Canad. J. Math., 52, No. 6, 1310–1338 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  658. C. R. Yohe, “Triangular and diagonal forms for rnatrices over coinrnutative noetherian rings,” J. Algebra, 6, 335–368 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  659. Hong You, “Prestabilization for K1Uϵ of Λ-2-fold rings,” Chinese Sci. Bull., 37, No. 5, 357–361 (1992).

    MATH  Google Scholar 

  660. Hong You, “Stabilization of unitary groups over polynomial rings,” Chinese Ann. Math., Ser. B, 16, No. 2, 177–190 (1995).

  661. Hong You, “Subgroups of classical groups normalised by relative elementary groups,” J. Pure Appl. Algebra, 1–16 (2011) (to appear).

  662. Hong You and Sheng Chen, “Subrings in quadratic fields which are not universal for GE2,” Quarl. J. Math., 54, 233–241 (2003).

    Google Scholar 

  663. Hong You and Shengkui Ye, “Prestability for quadratic K1 of Λ-1-fold stable rings,” J. Algebra, 319, 2072–2081 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  664. D. C. Youla and P. F. Pickel, “The Quillen–Suslin theorem and the structure of n-dimensional elementary polynomial matrices,” IEEE Trans. Circuits Systems, 31, 513–517 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  665. Jiangguo Zha., “An embedding theorem between special linear groups over any fields,” Chinese Ann. Math., Ser. B, 16, No. 4, 477–486 (1995).

  666. Jiangguo Zha, “Hornornorphisrns between the Chevalley groups over any field of eliaraeeristic zero,” Comm. Algebra, 24, No. 2, 659–703 (1996).

    Article  MathSciNet  Google Scholar 

  667. Jiangguo Zha, “Determination of hoinoinorphisins between linear groups of the saine degree over division rings,” J. London Math. Soc., 53, No. 3, 479–488 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  668. Haiquan Zhang and Luqun Wang, “Normal subgroups of syrnplectic groups over Φ-surjective rings,” Acta Math. Sinica, 25, 270–278 (1985) (in Chinese).

    Google Scholar 

  669. Yongzheng Zhang, “The structure of two-dimentional linear groups over semi-local rings,” Kexue Tongbao, 26, No. 23, 1469 (1981) (in Chinese).

  670. Zuhong Zhang, “Lower K-theory of unitary groups,” Dolctorarbeit Univ. Belfast (2007).

  671. Zuhong Zhang, “Stable sandwich classification theorem for classical-like groups,” Math. Proc. Cambridge Phil. Soc., 143, No. 3, 607–619 (2007).

    Article  MATH  Google Scholar 

  672. Zuhong Zhang, “Subnormal structure of nonstable unitary groups over rings,” J. Pure Appl. Algebra, 214, 622–628 (2010).

    Google Scholar 

  673. Fang Zhou and Li Li, “A theorern on the generators of the general linear group over a local ring R,” Dongbei Shida Xuebao, No. 2, 123–127 (1983) (in Chinese).

  674. R. Zirnniert, “Zur SL2 der ganzen Zahlen eines irnaginarquadratischen Zahlkörpers,” Inv. Math., 19, 73–81 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vavilov.

Additional information

Translated from Zapiski Nauchykh Seminarov POMI, Vol. 394, 2011, pp. 33–139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavilov, N.A., Stepanov, A.V. Linear groups over general rings. I. Generalities. J Math Sci 188, 490–550 (2013). https://doi.org/10.1007/s10958-013-1146-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1146-7

Navigation