Skip to main content
Log in

Holomorphic functions of exponential type and duality for stein groups with algebraic connected component of identity

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We suggest a generalization of Pontryagin duality from the category of commutative, complex Lie groups to the category of (not necessarily commutative) Stein groups with algebraic connected component of identity. In contrast to the other similar generalizations, in our approach the enveloping category consists of Hopf algebras (in a proper symmetrical monoidal category).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Akbarov, “Stereotype spaces, algebras, homologies: An outline,” in: A. Ya. Helemskii, ed., Topological Homology, Nova Science Publishers (2000), pp. 1–29.

  2. S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces and in topological algebra,” J. Math. Sci., 113, No. 2, 179–349 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. S. S. Akbarov, “Pontryagin duality and topological algebras,” in: K. Jarosz and A. Soltysiak, eds., Topological Algebras, Their Applications and Related Topics, Vol. 67, Banach Center Publications (2005), pp. 55–71.

  4. V. A. Artamonov, V. N. Salii, L. A. Skornyakov, L. N. Shevrin, and E. G. Shul’geifer, General Algebra [in Russian], Vol. 2, Nauka, Moscow (1991).

    MATH  Google Scholar 

  5. N. Bourbaki, Espaces Vectoriels Topologiques. Chaps. I–V, Hermann, Paris.

  6. N. Bourbaki, Topologie Générale. Chaps. III–VIII, Hermann, Paris.

  7. K. Brauner, “Duals of Fréchet spaces and a generalization of the Banach–Dieudonné theorem,” Duke Math. J., 40, No. 4, 845–855 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press (1995).

  9. A. Van Daele, “Dual pairs of Hopf ∗-algebras,” Bull. London Math. Soc., 25, 209–230 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Van Daele, “Multiplier Hopf algebras,” Trans. Amer. Math. Soc., 342, 917–932 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Van Daele, “An algebraic framework for group duality,” Adv. Math., 140, 323–366 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Van Daele, The Haar Measure on Some Locally Compact Quantum Groups, http://arXiv.org/abs/math/0109004v1 (2001).

  13. S. Dăscălescu, C. Năstăsescu, and Ş. Raianu, Hopf Algebras, Marcel Dekker (2001).

  14. M. Enock and J.-M. Schwartz, “Une dualité dans les algèbres de von Neumann,” Note C. R. Acad. Sci. Paris, 277, 683–685 (1973).

    MATH  MathSciNet  Google Scholar 

  15. M. Enock and J.-M. Schwartz, “Une catégorie d’algèbres de Kac,” Note C. R. Acad. Sci. Paris, 279, 643–645 (1974).

    MATH  MathSciNet  Google Scholar 

  16. M. Enock and J.-M. Schwartz, “Une dualité dans les algèbres de von Neumann,” Supp. Bull. Soc. Math. France Mém., 44, 1–144 (1975).

    MathSciNet  Google Scholar 

  17. M. Enock and J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups, Springer (1992).

  18. H. Grauert and R. Remmert, Theory of Stein Spaces, Springer (1977).

  19. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer (1963).

  20. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press (1985).

  21. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart (1981).

    MATH  Google Scholar 

  22. S. Kakutani and V. Klee, “The finite topology of a linear space,” Arch. Math., 14, No. 1, 55–58 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Kassel, Quantum Groups, Springer (1995).

  24. M. Krein, “A principle of duality for bicompact groups and quadratic block algebras,” Dokl. Akad. Nauk SSSR, 69, 725–728 (1949).

    MathSciNet  Google Scholar 

  25. J. Kustermans, W. Pusz, P. M. So_ltan, S. Vaes, A. Van Daele, L. Vainerman, and S. L. Woronowicz, “Locally compact quantum groups,” in: P. M. Hajak, ed., Quantum Symmetry in Noncommutative Geometry, Locally Compact Quantum Groups. Lect. Notes School/Conf. on Noncommutative Geometry and Quantum Groups, Warsaw, 2001, Banach Center Publications, to appear.

  26. J. Kustermans and S. Vaes, “Locally compact quantum groups,” Ann. Sci. École Norm. Sup., 4è sér., 33, 837–934 (2000).

    MATH  MathSciNet  Google Scholar 

  27. B. Ya. Levin, Lectures on Entire Functions, Amer. Math. Soc. (1996).

  28. S. MacLane, Categories for the Working Mathematician, Springer, Berlin (1971).

    Google Scholar 

  29. K.-H. Neeb, Holomorphy and Convexity in Lie Theory, Walter de Gruyter (2000).

  30. A. Pietsch, Nukleare Lokalkonvexe Raume, Akademie, Berlin (1965).

    Google Scholar 

  31. A. Yu. Pirkovskii, “Arens–Michael envelopes, homological epimorphisms, and relatively quasifree algebras,” Tr. Mosk. Mat. Obshch., 69, 34–123 (2008).

    Google Scholar 

  32. L. Pontrjagin, “The theory of topological commutative groups,” Ann. Math., 35, No. 2, 361–388 (1934).

    Article  MathSciNet  Google Scholar 

  33. W. Rudin, Functional Analysis, McGraw-Hill (1973).

  34. N. Saavedra Rivano, Catègories Tannakiennes, Lect. Notes Math., Vol. 265, Springer (1972).

  35. P. Schauenburg, “On the braiding on a Hopf algebra in a braided category,” New York J. Math., 4, 259–263 (1998).

    MATH  MathSciNet  Google Scholar 

  36. B. V. Shabat, Introduction to Complex Analysis [in Russian], Vol. I, Nauka, Moscow (1985).

    Google Scholar 

  37. B. V. Shabat, Introduction to Complex Analysis [in Russian], Vol. II, Nauka, Moscow (1985).

    Google Scholar 

  38. H. H. Shaeffer, Topological Vector Spaces, Macmillan (1966).

  39. M. F. Smith, “The Pontrjagin duality theorem in linear spaces,” Ann. Math., 56, No. 2, 248–253 (1952).

    Article  Google Scholar 

  40. R. Street, Quantum Groups: A Path to Current Algebra, Australian Math. Soc. Lect. Ser., No. 19, Cambridge (2007).

  41. M. E. Sweedler, “Cocommutative Hopf algebras with antipode,” Bull. Amer. Math. Soc., 73, No. 1, 126–128 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  42. J. L. Taylor, Several Complex Variables with Connections to Algebraic Geometry and Lie Groups, Grad. Stud. Math., Vol. 46, Amer. Math. Soc., Providence (2002).

    Google Scholar 

  43. L. I. Vainerman, “A characterization of objects that are dual to locally compact groups,” Funkts. Anal. Prilozen., 8, No. 1, 75–76 (1974).

    Article  MathSciNet  Google Scholar 

  44. L. I. Vainerman and G. I. Kac, “Nonunimodular ring groups, and Hopf–von Neumann algebras,” Dokl. Akad. Nauk SSSR, 211, 1031–1034 (1973).

    MathSciNet  Google Scholar 

  45. L. I. Vainerman and G. I. Kac, “Nonunimodular ring groups and Hopf–von Neumann algebras,” Mat. Sb., 94 (136), 194–225, 335 (1974).

    MathSciNet  Google Scholar 

  46. E. B. Vinberg and A. L. Onishchik, A Seminar on Lie Groups and Algebraic Groups [in Russian], URSS, Moscow (1995).

    Google Scholar 

  47. S. Wang, Quantum ‘ax + b’ group as quantum automorphism group of k[x], http://arXiv.org/abs/math/9807094v2 (1998).

  48. S. L. Woronowicz, “Quantum ‘az + b’ group on complex plane,” Int. J. Math., 12, No. 4, 461–503 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  49. S. Zhang, Braided Hopf Algebras, arXiv:math.RA/0511251, v8 25 May 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Akbarov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 14, No. 1, pp. 3–178, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbarov, S.S. Holomorphic functions of exponential type and duality for stein groups with algebraic connected component of identity. J Math Sci 162, 459–586 (2009). https://doi.org/10.1007/s10958-009-9646-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9646-1

Keywords

Navigation