Skip to main content
Log in

Rauzy tilings and bounded remainder sets on the torus

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

For the two-dimensional torus \(\mathbb{T}^2 \), we construct the Rauzy tilings d0 ⊃ d1 ⊃ … ⊃ dm ⊃ …, where each tiling dm+1 is obtained by subdividing the tiles of dm. The following results are proved. Any tiling dm is invariant with respect to the torus shift S(x) = x+ \(\left( {_{\zeta ^2 }^\zeta } \right)\) mod ℤ2, where ζ−1 > 1 is the Pisot number satisfying the equation x3− x2−x-1 = 0. The induced map \(S^{(m)} = \left. S \right|_{B^m d} \) is an exchange transformation of Bmd ⊂ \(\mathbb{T}^2 \), where d = d0 and \( B = \left( {_{1 - \zeta ^2 \zeta ^2 }^{ - \zeta - \zeta } } \right) \) . The map S(m) is a shift of the torus \(B^m d \simeq \mathbb{T}^2 \), which is affinely isomorphic to the original shift S. This means that the tilings dm are infinitely differentiable. If ZN(X) denotes the number of points in the orbit S1(0), S2(0), …, SN(0) belonging to the domain Bmd, then, for all m, the remainder rN(Bmd) = ZN(Bmd) − N ζm satisfies the bounds −1.7 < rN(Bmd) < 0.5. Bibliography: 10 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rauzy, “Nombres algébriques et substitutions,” Bull. Soc. Math. France, 110, 147–178 (1982).

    MATH  MathSciNet  Google Scholar 

  2. V. G. Zhuravlev, “One-dimensional Fibonacci tilings,” Izv. Ross. Akad. Nauk, Ser. Matem., in print.

  3. S. Ferenczi, “Bounded remainder sets,” Acta Arith., 61, 319–326 (1992).

    MATH  MathSciNet  Google Scholar 

  4. S. Akiyma, “On the boundary of self affine tilings generated by Pisot numbers,” J. Math. Soc. Japan, 54, 283–308 (2002).

    Article  MathSciNet  Google Scholar 

  5. A. Messaoudi, “Propriétés arithmétiques et dynamiques du fractal de Rauzy,” J. Théorie Nombres de Bordeaux, 10, 135–162 (1998).

    MATH  MathSciNet  Google Scholar 

  6. S. Ito and M. Kimura, “On Rauzy fractal,” Japan J. Indust. Appl. Math., 8, 461–486 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Ito and M. Ohtsuki, “Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms,” 16, No. 2, 441–472 (1993).

    MATH  MathSciNet  Google Scholar 

  8. A. V. Shutov, “On the distribution of fractional parts,” Chebyshev Sb., 5, No. 3, 111–121 (2004).

    MathSciNet  Google Scholar 

  9. E. Hecke, “Eber analytische Funktionen und die Verteilung von Zahlen mod. eins,” Math. Sem. Hamburg Univ., 1, 54–76 (1921).

    Article  MATH  Google Scholar 

  10. H. Kesten, “On a cojecture of Erdös and Szüsz related to uniform distribution mod 1,” Acta Arith., 14, 26–38 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 322, 2005, pp. 83–106.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, V.G. Rauzy tilings and bounded remainder sets on the torus. J Math Sci 137, 4658–4672 (2006). https://doi.org/10.1007/s10958-006-0262-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0262-z

Keywords

Navigation