Skip to main content
Log in

Public-key cryptography and invariant theory

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We suggest public-key cryptosystems based on groups invariants. We also give an overview of known cryptosystems that involve groups. Bibliography: 33 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-case/average case equivalence,” Proceedings of the 29th Annual ACM Symposium on Theory of Computing(1997), ACM, New York (1999), pp. 284–293.

    Google Scholar 

  2. I. Anshel and M. Anshel, “From the post-Markov theorem through decision problems to public-key cryptography,” Amer. Math. Monthly, 100, 835–844 (1993).

    Google Scholar 

  3. I. Anshel, M. Anshel, and D. Goldfeld, “An algebraic method for public-key cryptography,” Math. Res. Lett., 6, 287–291 (1999).

    Google Scholar 

  4. J. Benaloh, “Dense probabilistic encryption,” First Annual Workshop on Selected Areas in Cryptology(1994), pp. 120–128.

  5. A. Blass and Y. Gurevich, “Matrix transformation is complete for the average case,” SIAM J. Comput., 24, 3–29 (1995).

    Google Scholar 

  6. D. Coppersmith and I. Shparlinski, “On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping,” J. Cryptology, 13, 339–360 (2000).

    Google Scholar 

  7. J. Dieudonn’e and J. Carrell, Invariant Theory, Old and New, Academic Press (1971).

  8. Do Long Van, A. Jeyanthi, R. Siromony, and K. Subramanian, “Public key cryptosystems based on word problems,” ICOMIDC Symp. Math. of Computation, Ho Chi Minh City (1988).

  9. J. Feigenbaum and M. Merritt, “Open questions, talk abstracts, and summary of discussions,” DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 2, 1–45 (1991).

    Google Scholar 

  10. M. Garzon and Y. Zalcstein, “The complexity of Grigorchuk groups with application to cryptography,” Theoret. Comput. Sci., 88, 83–98 (1991).

    Google Scholar 

  11. O. Goldreich, Modern Cryptography, Probabilistic Proofs, and Pseudorandomness, Springer (1998).

  12. O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosystems from lattice reduction problems,” Lect. Notes Comput. Sci., 1294, 112–131 (1997).

    Google Scholar 

  13. S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, http://www-cse.ucsd.edu/users/mihir/papers/gb.html (2001).

  14. S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput. System Sci., 28, 270–299 (1984).

    Google Scholar 

  15. D. Grigoriev and I. Ponomarenko, “On non-Abelian homomorphic public-key cryptosystems,” Zap. Nauchn. Semin. POMI, 293, 39–58 (2002).

    Google Scholar 

  16. K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, and C. Park, “New public-key cryptosystem using braid groups,” Lect. Notes Comput. Sci., 1880, 166–183 (2000).

    Google Scholar 

  17. N. Koblitz, Algebraic Aspects of Cryptography, Springer-Verlag, Berlin (1998).

    Google Scholar 

  18. K. Koyama, U. Maurer, T. Okamoto, and S. Vanstone, “New public-key schemes based on elliptic curves over the ring ℤ n ,” Lect. Notes Comput. Sci., 576, 252–266 (1991).

    Google Scholar 

  19. L. Levin, “Average case complete problems,” SIAM J. Comput., 15, 285–286 (1986).

    Google Scholar 

  20. E. Luks, “Permutation groups and polynomial-time computations,” DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 11, 139–175 (1993).

    Google Scholar 

  21. E. Luks, Personal communication(2002).

  22. U. Maurer and S. Wolf, “Lower bounds on generic algorithms in groups,” Lect. Notes Comput. Sci., 1403, 72–84 (1998).

    Google Scholar 

  23. D. Naccache and J. Stern, “A new public-key cryptosystem,” Lect. Notes Comput. Sci., 1233, 27–36 (1997).

    Google Scholar 

  24. D. Naccache and J. Stern, “A new public-key cryptosystem based on higher residues,” Proceedings of the 5th ACM Conference on Computer and Communication Security(1998), pp. 59–66.

  25. T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure as factoring,” Lect. Notes Comput. Sci., 1403, 308–317 (1998).

    Google Scholar 

  26. S.-H. Paeng, D. Kwon, K.-C. Ha, and J. H. Kim, “Improved public key cryptosystem using finite non-Abelian groups,” Preprint NSRI Korea.

  27. P. Paillier, “Public-key cryptosystem based on composite degree residuosity classes,” Lect. Notes Comput. Sci., 1592, 223–238 (1999).

    Google Scholar 

  28. D. Rappe, Algebraisch Homomorphe Kryptosysteme, Diplomarbeit, Universit¨at Dortmund (2000).

  29. L. Ronyai, “Computations in associative algebras,” DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 11, 221–243 (1993).

    Google Scholar 

  30. T. Springer, “Invariant theory,” Lect. Notes Math., 585, Springer (1977).

  31. B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, Vienna (1993).

    Google Scholar 

  32. N. Wagner and M. Magyarik, “A public-key cryptosystem based on the word-problem,” Lect. Notes Comput. Sci., 196, 19–36 (1985).

    Google Scholar 

  33. A. Yao, “How to generate and exchange secrets,” Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Sciences(1986), pp. 162–167.

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 293, 2002, pp. 26–38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoriev, D. Public-key cryptography and invariant theory. J Math Sci 126, 1152–1157 (2005). https://doi.org/10.1007/s10958-005-0068-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0068-4

Keywords

Navigation