Skip to main content
Log in

Formulas for Asymptotic Functions via Conjugates, Directional Derivatives and Subdifferentials

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The q-asymptotic function is a new tool that permits to study nonconvex optimization problems with unbounded data. It is particularly useful when dealing with quasiconvex functions. In this paper, we obtain formulas for the q-asymptotic function via c-conjugates, directional derivatives and subdifferentials. We obtain them under lower semicontinuity or local Lipschitz assumptions. The well-known formulas for the asymptotic function in the convex case are consequences of these ones. We obtain a new formula for the convex case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We assume that \(+\infty +(-\infty )=-\infty +(+\infty )=+\infty -(+\infty )=-\infty -(-\infty )=-\infty .\)

  2. The definition of “\(\lim \sup \inf \)” is in the second line. We consider a simpler formula for \(f^{\uparrow }(x;\cdot )\) when f is lsc (see [12, Section 4]).

References

  1. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  2. Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey (1970)

    Book  MATH  Google Scholar 

  3. Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  4. Flores-Bazán, F., Hadjisavvas, N., Lara, F., Montenegro, I.: First- and second-order asymptotic analysis with applications in quasiconvex optimization. J. Optim. Theory Appl. 170, 372–393 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amara, Ch.: Directions de majoration d’une fonction quasiconvexe et applications. Serdica Math. J. 24, 289–306 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Penot, J.P.: What is quasiconvex analysis? Optimization 47, 35–110 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Maximizing and minimizing quasiconvex functions: related properties, existence and optimality conditions via radial epiderivates. J. Glob. Optim. 63, 99–123 (2015)

    Article  MATH  Google Scholar 

  8. Moreau, J.J.: Inf-convolution, sous-additivitité, convexité des fonctiones numériques. J. Math. Pures Appl. 49, 109–154 (1970)

    MathSciNet  MATH  Google Scholar 

  9. Balder, E.J.: An extension of duality-stability relations to nonconvex optimization problems. SIAM J. Control Optim. 15, 329–343 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martínez-Legaz, J.E.: Generalized convex duality and its economics applications. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 237–292. Springer, Boston (2005)

    Chapter  Google Scholar 

  11. Penot, J.P.: Conjugacies adapted to lower semicontinuous functions. Optimization 64, 473–494 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Rockafellar, R.T.: Generalized directional derivatives and subgradients of nonconvex functions. Can. J. Math. 32, 257–280 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ansari, Q.H., Lalitha, C.S., Mehta, M.: Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  14. Giorgi, G., Guerraggio, G., Thierfelder, J.: Mathematics of Optimization: Smooth and Nonsmooth Case. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  15. Penot, J.P.: Are generalized derivatives useful for generalized convex functions? In: Crouzeix, J.-P., Martínez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity, pp. 3–60. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  16. Rockafellar, R.T.: The Theory of Subgradients and its Applications to Problems of Optimization: Convex and Nonconvex Functions. Heldermann, Berlin (1981)

    MATH  Google Scholar 

  17. Komlósi, S.: Generalized convexity and generalized derivatives. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 421–463. Springer, Boston (2005)

    Chapter  Google Scholar 

  18. Penot, J.P.: Calculus Without Derivatives. Springer, New York (2013)

    Book  MATH  Google Scholar 

  19. Crouzeix, J.-P.: Continuity and differentiability properties of quasiconvex functions. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 109–130. Academic Press, New York (1981)

    Google Scholar 

  20. Wegge, L.: Mean value theorem for convex functions. J. Math. Econ. 1, 207–208 (1974)

    Article  MATH  Google Scholar 

  21. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  22. Zagrodny, D.: Approximate mean value theorem for upper subderivative. Nonlinear Anal. 12, 1413–1428 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Marcel Dekker, New York (1971)

    MATH  Google Scholar 

  24. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the associate editor and two referees. Their valuable comments and suggestions contributed to a substantial improvement of the paper. This research was partially supported by Conicyt–Chile through Projects Fondecyt Postdoctorado 3160205 (Lara) and Fondecyt Regular 1150440 (López).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén López.

Additional information

Communicated by Constantin Zălinescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, F., López, R. Formulas for Asymptotic Functions via Conjugates, Directional Derivatives and Subdifferentials. J Optim Theory Appl 173, 793–811 (2017). https://doi.org/10.1007/s10957-017-1101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1101-8

Keywords

Mathematics Subject Classification

Navigation