Skip to main content
Log in

Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints

Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local Q-minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abadie, J.: On the Kuhn–Tucker theorem in Nonlinear Programming (NATO Summer School, Menton, 1964). North-Holland, Amsterdam (1967)

    Google Scholar 

  2. Bannans, J.F., Cominetti, R., Shapiro, A.: Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optim. 9, 466–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265–287 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gfrerer, H.: On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21, 151–176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gfrerer, H.: On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs. SIAM J. Optim. 23, 632–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kawasaki, H.: An envelope-like effect of infinitely many inequality constraints on second order necessary conditions for minimization problems. Math. Program. 41, 73–96 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Penot, J.P.: Second order conditions for optimization problems with constraints. SIAM J. Control Optim. 37, 303–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gutiérrez, C., Jiménez, B., Novo, N.: On second order Fritz John type optimality conditions in nonsmooth multiobjective programming. Math. Program. Ser. B 123, 199–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiménez, B., Novo, V.: Optimality conditions in differentiable vector optimization via second-order tangent sets. Appl. Math. Optim. 49, 123–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khanh, P.Q., Tuan, N.D.: Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives. J. Optim. Theory Appl. 133, 341–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khanh, P.Q., Tuan, N.D.: Second order optimality conditions with the envelope-like effect in nonsmooth multiobjective programming II: optimality conditions. J. Math. Anal. Appl. 403, 703–714 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khanh, P.Q., Tuan, N.D.: Second-order optimality conditions with the envelope-like effect for nonsmooth vector optimization in infinite dimensions. Nonlinear Anal. 77, 130–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Taa, A.: Second order conditions for nonsmooth multiobjective optimization problems with inclusion constraints. J. Glob. Optim. 50, 271–291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhu, S., Li, S.: Optimality conditions of strict minimality in optimization problems under inclusion constraints. Appl. Math. Comput. 219, 4816–4825 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Durea, M.: First and second order Lagrange claims for set-valued maps. J. Optim. Theory Appl. 133, 111–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jahn, J., Khan, A.A., Zeilinger, P.: Second-order optimality conditions in set optimization. J. Optim. Theory Appl. 125, 331–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, S.J., Zhu, S.K., Li, X.B.: Second order optimality conditions for strict efficiency of constrained set-valued optimization. J. Optim. Theory Appl. 155, 534–557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khan, A.A., Tammer, C.: Second-order optimality conditions in set-valued optimization via asymptotic derivatives. Optimization 62, 743–758 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhu, S.K., Li, S.J., Teo, K.L.: Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization. J. Glob. Optim. 58, 673–679 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khanh, P.Q., Tung, N.M.: First and second-order optimality conditions without differentiability in multivalued vector optimization. Positivity 19, 817–841 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khanh, P.Q., Tung, N.M.: Second-order optimality conditions with the envelope-like effect for set-valued optimization. J. Optim. Theory Appl. 167, 68–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24, 1044–1049 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiménez, B.: Strict efficiency in vector optimization. J. Math. Anal. Appl. 265, 264–284 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48, 881–908 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Penot, J.P.: Differentiability of relations and differential stability of perturbed optimization problems. SIAM J. Control Optim. 22, 529–551 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ward, D.E.: A chain rule for first and second order epiderivatives and hypoderivatives. J. Math. Anal. Appl. 348, 324–336 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khan, A.A., Tammer, C., Zalinescu, C.: Set-Valued Optimization: An Introduction with Application. Springer, Berlin (2014)

    MATH  Google Scholar 

  28. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  29. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Applications, vol. II. Springer, Berlin (2006)

    Google Scholar 

  30. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  31. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  32. Khanh, P.Q., Kruger, A.K., Thao, N.H.: An induction theorem and nonlinear regularity models. SIAM J. Optim. 25, 2561–2588 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ha, T.X.D.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. In: Pardalos, P., Rassis, ThM, Khan, A.A. (eds.) Chapter 21, Nonlinear Analysis and Variational Problems, pp. 305–324. Springer, Heidelberg (2009)

    Google Scholar 

  34. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, New Jersey/London (2002)

    Book  MATH  Google Scholar 

  35. Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ursescu, C.: Multifunctions with closed convex graph. Czechoslov. Math. J. 25, 438–441 (1975)

    MathSciNet  MATH  Google Scholar 

  37. Jahn, J.: Introduction to the Theory of Nonlinear Optimization, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  38. Robinson, S.M.: Stability theorems for systems of inequalities. Part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Vietnam National University Hochiminh City under Grant Number B2015-28-03. A part of the work was completed during a scientific stay of the authors at Vietnam Institute for Advance Study in Mathematics (VIASM), whose hospitality is appreciated. The authors are very grateful to the editors and referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Quoc Khanh.

Additional information

Communicated by Antonino Maugeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanh, P.Q., Tung, N.M. Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints. J Optim Theory Appl 171, 45–69 (2016). https://doi.org/10.1007/s10957-016-0995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0995-x

Keywords

Mathematics Subject Classification

Navigation