Skip to main content

Advertisement

Log in

Degree Theory and Solution Existence of Set-Valued Vector Variational Inequalities in Reflexive Banach Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a degree theory for set-valued vector variational inequalities is built in reflexive Banach spaces. By using the method of degree theory, some existence results of solutions for set-valued vector variational inequalities are established under suitable conditions. Furthermore, some equivalent characterizations for the nonemptiness and boundedness of solution sets to single-valued vector variational inequalities are obtained under pseudomonotonicity assumption. To the best of our knowledge, there are still no papers dealing with the degree theory for vector variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Facchinei, F., Pang, J.S.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  2. Kien, B.T., Wong, M.-M., Wong, N.C., Yao, J.C.: Degree theory for generalized variational inequalities and applications. Eur. J. Oper. Res. 193, 12–22 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Qiao, F.S., He, Y.R.: Strict feasibility of pseudomonotone set-valued variational inequalities. Optimization 60, 303–310 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Wang, Z.B., Huang, N.J.: Degree theory for a generalized set-valued variational inequality with an application in Banach spaces. J. Glob. Optim. 49, 343–357 (2011)

    Article  MATH  Google Scholar 

  5. Robinson, S.M.: Localized normal maps and the stability of variational conditions. Set-Valued Anal. 12, 259–274 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gowda, M.S.: Inverse and implicit function theorems for H-differentiable and semismooth functions. Optim. Methods Softw. 19, 443–461 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Giannessi, F.: Theorems of alternative, quadratic program and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.C. (eds.) Variational Inequality and Complementarity Problems. Wiley, New York (1980)

    Google Scholar 

  8. Giannessi, F.: Vector Variational Inequalities and Vector Equilibria. Kluwer Academic Publishers, Dordrechet, Holland (2000)

    Book  MATH  Google Scholar 

  9. Chen, G.Y., Huang, X.X., Yang, X.Q.: Vector Optimization: Set-Valued and Variational Analysis. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (2005)

  10. Chen, G.Y.: Existence of solutions for a vector variational inequality: an extension of the Hartman–Stampacchia theorem. J. Optim. Theory Appl. 74, 445–456 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, G.Y., Li, S.J.: Existence of solutions for a generalized quasi-vector variational inequality. J. Optim. Theory Appl. 90, 321–334 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Daniilidis, A., Hadjisavvas, N.: Existence theorems for vector variational inequalities. Bull. Aust. Math. Soc. 54, 473–481 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lee, G.M., Kim, D.S., Lee, B.S., Yen, N.D.: Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal. Theory Methods Appl. 34, 745–765 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Konnov, I.V., Yao, J.C.: On the generalized vector variational inequality problem. J. Math. Anal. Appl. 206, 42–58 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fang, Y.P., Huang, N.J.: Feasibility and solvability of vector variational inequalities with moving cones in Banach spaces. Nonlinear Anal. Theory Methods Appl. 70, 2024–2034 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu, S.C., Parageorgiou, N.S.: Generalization of Browders degree theory. Trans. Am. Math. Soc. 347, 233–259 (1995)

    MATH  Google Scholar 

  17. Wang, Z.B., Huang, N.J.: The degree theory for set-valued compact perturbation of monotone type mappings with an application. Appl. Anal. 92, 616–635 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cioranescu, I.: Geometry of Banach Spaces Duality Mappings and Nonlinear Problems. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

  19. Huang, X.X., Fang, Y.P., Yang, X.Q.: Characterizing the nonemptiness and compactness of the solution set of a vector variational inequality by scalarization. J. Optim. Theory Appl. 162, 548–558 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Browder, F.E.: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 9, 1–39 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B Nonlinear Monotone Operators. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  22. Kien, B.T., Wong, M.M., Wong, N.C.: On the degree theory for general mappings of monotone type. J. Math. Anal. Appl. 340, 707–720 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cellina, A.: Approximations of set-valued functions and fixed point theorems. Ann. Mater. Pura. Appl. 82, 17–24 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  24. Isac, G., Kalashnikov, V.V.: Exceptional family of elements, Leray–Schauder alternative, pseudomonotone operators and complementarity. J. Optim. Theory Appl. 109, 69–83 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, J., Whitaker, J.: Exceptional family of elements and solvability of variational inequalities for mappings defined only on closed convex cones in Banach spaces. J. Math. Anal. Appl. 310, 254–261 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kien, B.T., Yao, J.-C., Yen, N.D.: On the solution existence of pseudomonotone variational inequalities. J. Glob. Optim. 41, 135–145 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Crouzeix, J.P.: Pseudomonotone variational inequality problems: existence of solutions. Math. Program. 78, 305–314 (1997)

    MATH  MathSciNet  Google Scholar 

  28. Aubin, J.P.: Optima and Equilibria. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11061006, 11226224 and 61363036), the Program for Excellent Talents in Guangxi Higher Education Institutions, the Guangxi Natural Science Foundation (2012GXNSFBA053008), the Initial Scientific Research Foundation for Ph.D. of Guangxi Normal University, and the Innovation Project of Guangxi Graduate Education (YCSZ2014088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-hua Fan.

Additional information

Communicated by Jen-Chih Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Ry., Dou, Z. & Fan, Jh. Degree Theory and Solution Existence of Set-Valued Vector Variational Inequalities in Reflexive Banach Spaces. J Optim Theory Appl 167, 527–549 (2015). https://doi.org/10.1007/s10957-015-0731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0731-y

Keywords

Mathematics Subject Classification

Navigation