Skip to main content
Log in

On the Existence of Minimizers of Proximity Functions for Split Feasibility Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Many inverse problems can be formulated as split feasibility problems. To find feasible solutions, one has to minimize proximity functions. We show that the existence of minimizers to the proximity function for Censor–Elfving’s split feasibility problem is equivalent to the existence of projections on appropriate convex sets and provide conditions under which such projections exist. These projections turn out to be the unique optimal solution of their Fenchel–Rockafellar duals and can be computed by the proximal point algorithm efficiently. Applications to linear equations and linear feasibility problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Combettes, P.L.: Inconsistent signal feasibility problems: least-squares solutions in a product space. IEEE Trans. Signal Process. 42, 2955–2966 (1994)

    Article  Google Scholar 

  3. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman, G.T.: On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 51, 1065–1088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Combettes, P.L., Dung, Dinh, Vu, B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79, 418–443 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L., Dung, Dinh, Vu, B.C.: Proximity for sums of composite functions. J. Math. Anal. Appl. 380, 680–688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Pierro, A.R., Iusem, A.N.: On the asymptotic behavior of some alternate smoothing series expansion iterative methods. Linear Algebr. Appl. 130, 3–24 (1990)

    Article  MATH  Google Scholar 

  11. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  12. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. In: Lecture Notes in Mathematics 2057. Springer, Heidelberg (2012)

  13. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  14. Byrne, C.: Iterative Algorithms in Inverse Problems. http://faculty.uml.edu/cbyrne/ITER2.pdf (2006)

  15. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bot, R.I., Csetnek, E.R.: On the convergence rate of a forward–backward type primal-dual splitting algorithm for convex optimization problems. Optimization 64, 5–23 (2015)

    Article  MathSciNet  Google Scholar 

  17. Byrne, C.: An elementary proof of convergence for the forward–backward splitting algorithm. J. Nonlinear Convex Anal. 15, 681–691 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward–backward algorithm for convex minimization. SIAM J. Optim. 24, 232–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bauschke, H.H., Phan, H.M., Wang, X.: The method of alternating relaxed projections for two nonconvex sets. Vietnam J. Math. 42, 421–450 (2014)

    Article  MathSciNet  Google Scholar 

  20. Cegielski, A., Suchocka, A.: Relaxed alternating projection methods. SIAM J. Optim. 19, 1093–1106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21, 475–501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Byrne, C., Censor, Y.: Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization. Geometric programming. Ann. Oper. Res. 105(2001), 77–98 (2002)

    MathSciNet  Google Scholar 

  23. Xu, H.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010). 17 pp

    Article  Google Scholar 

  24. López, G., Martin-Márquez, V., Wang, F., Xu, H.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012). 18 pp

    Article  Google Scholar 

  25. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)

    Article  MATH  Google Scholar 

  26. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd edn. Springer, New York (2006)

    Book  Google Scholar 

  27. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, Singapore (2002)

    Book  MATH  Google Scholar 

  28. Adly, S., Ernst, E., Théra, M.: On the closedness of the algebraic difference of closed convex sets. J. Math. Pures Appl. 82, 1219–1249 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bauschke, H.H., Wang, X., Wylie, C.J.S.: Fixed points of averages of resolvents: geometry and algorithms. SIAM J. Optim. 22, 24–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Burachik, R.S., Jeyakumar, V.: A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12, 279–290 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank two anonymous referees and Dr. Franco Giannessi for their suggestions which have improved the presentation of the paper. X. Wang was partially supported by a Discovery Grant of NSERC. X. Yang was partially supported by a Grant of NSFC (No. 11271391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, X. On the Existence of Minimizers of Proximity Functions for Split Feasibility Problems. J Optim Theory Appl 166, 861–888 (2015). https://doi.org/10.1007/s10957-015-0716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0716-x

Keywords

Mathematics Subject Classification

Navigation