Skip to main content
Log in

On the Finite Convergence of a Projected Cutter Method

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The subgradient projection iteration is a classical method for solving a convex inequality. Motivated by works of Polyak and of Crombez, we present and analyze a more general method for finding a fixed point of a cutter, provided that the fixed point set has nonempty interior. Our assumptions on the parameters are more general than existing ones. Various limiting examples and comparisons are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, \(U_r\) is not even a relaxed cutter in the sense of [2, Definition 2.1.30].

  2. \(U_{r,\eta }\) can also be called a generalized relaxation of \(T\) with relaxation parameter \(\eta \); see [2, Definition 2.4.1].

  3. We note that item (iv) can also be deduced from [2, (2.27)] with \(\lambda = (r+\Vert x-Tx\Vert )/\Vert x-Tx\Vert \), \(z=y\), and \(\delta =r\) in [2, Proposition 2.1.41]. This observation, as well as a similar one for (v), is due to a referee.

  4. This observation is a due to a referee.

  5. If we replace Fréchet differentiability by mere continuity, then we may consider a selection of the subdifferential operator \(\partial f\) instead.

References

  1. Polyak, T.: Random algorithms for solving convex inequalities. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 409–422. Elsevier, Amsterdam (2001)

  2. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Berlin (2012)

  3. Censor, Y., Chen, W., Pajoohesh, H.: Finite convergence of a subgradient projection method with expanding controls. Appl. Math. Optim. 64, 273–285 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crombez, G.: Finding common fixed points of a class of paracontractions. Acta Math. Hung. 103, 233–241 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Censor, Y., Zenios, A.: Parallel Optimization, Oxford University Press, New York (1997)

  6. Polyak, T.: Introduction to Optimization. Optimization Software, New York (1987)

    Google Scholar 

  7. Censor, Y., Lent, A.: Cyclic subgradient projections. Math. Program. 24, 233–235 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Censor, Y., Segal, A.: Sparse string-averaging and split common fixed points. In: Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A.J. (eds) Nonlinear Analysis and Optimization. I. Contemporary Mathematics, vol. 513, pp. 125–142. AMS, Haifa (2010)

  9. Combettes, L.: The foundations of set theoretic estimation. Proc. IEEE 81, 182–208 (1993)

    Article  Google Scholar 

  10. Combettes, L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. Image Process. 6, 493–506 (1997)

    Article  Google Scholar 

  11. Combettes, P.L., Luo, J.: An adaptive level set method for nondifferentiable constrained image recovery. IEEE Trans. Image Process. 11, 1295–1304 (2002)

    Article  MathSciNet  Google Scholar 

  12. Polyak, T.: Minimization of unsmooth functionals, USSR Comput. Math. Math. Phys. 9, 14–29 (1969) (The original version appeared in Akademija Nauk SSSR. Žurnal Vyčislitel’ noĭ Matematiki i Matematičeskoĭ Fiziki 9 (1969), 509–521.)

  13. Slavakis, K., Yamada, I.: The adaptive projected subgradient method constrained by families of quasi-nonexpansive mappings and its application to online learning. SIAM J. Optim. 23, 126–152 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yamada, I., Ogura, N.: Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions. Numer. Funct. Anal. Optim. 25, 593–617 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yamada, I., Ogura, N.: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yamada, I., Slavakis, K., Yamada, K.: An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques. IEEE Trans. Signal Process. 50, 1091–1101 (2002)

    Article  Google Scholar 

  17. Yamagishi, M., Yamada, I.: A deep monotone approximation operator based on the bestquadratic lower bound of convex functions. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E91-A, 1858–1866 (2008)

  18. Bauschke, H.H., Borwein, M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principlefor Fejér-monotone methods in Hilbert space. Math. Oper. Res. 26, 248–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bauschke, H.H., Wang, C., Wang, X., Xu, J.: On subgradient projectors. http://arxiv.org/abs/1403.7135v1 (2014)

  21. Pauwels, B.: Subgradient projection operators. http://arxiv.org/abs/1403.7237v1 (2014)

  22. Bauschke, H.H., Combettes, L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

  23. Bauschke, H.H.: Projection Algorithms and Monotone Operators. PhD thesis, Simon Fraser University, Burnaby, BC, Canada (1996)

  24. Bauschke, H.H., Kruk, G.: Reflection-projection method for convex feasibility problems with an obtuse cone. J. Optim. Theory Appl. 120, 503–531 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Raik, E.: A class of iterative methods with Fejér-monotone sequences, Eesti NSV Teaduste Akadeemia Toimetised. Füüsika-Matemaatika 18, 22–26 (1969)

    MATH  MathSciNet  Google Scholar 

  26. Rockafellar, T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fukushima, M.: A finite convergent algorithm for convex inequalities. IEEE Trans. Autom. Control 27, 1126–1127 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. De Pierro, A.R., Iusem, A.N.: A finitely convergent “row-action” method for the convex feasibility problem. Appl. Math. Optim. 17, 225–235 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Iusem, A.N., Moledo, L.: A finitely convergent method of simultaneous subgradient projections for the convex feasibility problem. Matemática Aplicada e Computacional 5, 169–184 (1986)

    MATH  MathSciNet  Google Scholar 

  30. Iusem, A.N., Moledo, L.: On finitely convergent iterative methods for the convexfeasibility problem. Boletim da Sociedade Brasileira de Matemática 18, 11–18 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pang, J.: Finitely convergent algorithm for nonconvex inequality problems. http://arxiv.org/abs/1405.7280v1 (2014)

Download references

Acknowledgments

The authors thank two anonymous referees for careful reading, constructive comments, and for bringing additional references to our attention. The authors also thank Jeffrey Pang for helpful discussions and for pointing out additional references. HHB was partially supported by a Discovery Grant and an Accelerator Supplement of the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Canada Research Chair Program. CW is partially supported by a Grant from Shanghai Municipal Commission for Science and Technology (13ZR1455500). XW is partially supported by a Discovery Grant of NSERC. JX is partially supported by NSERC Grants of HHB and XW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz H. Bauschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauschke, H.H., Wang, C., Wang, X. et al. On the Finite Convergence of a Projected Cutter Method. J Optim Theory Appl 165, 901–916 (2015). https://doi.org/10.1007/s10957-014-0659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0659-7

Keywords

Mathematics Subject Classification

Navigation