Skip to main content
Log in

Energy-Optimal Multi-Goal Motion Planning for Planar Robot Manipulators

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this work, the energy-optimal motion planning problem for planar robot manipulators with two revolute joints is studied, in which the end-effector of the robot manipulator is constrained to pass through a set of waypoints, whose sequence is not predefined. This multi-goal motion planning problem has been solved as a mixed-integer optimal control problem in which, given the dynamic model of the robot manipulator, the initial and final configurations of the robot, and a set of waypoints inside the workspace of the manipulator, one has to find the control inputs, the sequence of waypoints with the corresponding passage times, and the resulting trajectory of the robot that minimizes the energy consumption during the motion. The presence of the waypoint constraints makes this optimal control problem particularly difficult to solve. The mixed-integer optimal control problem has been converted into a mixed-integer nonlinear programming problem first making the unknown passage times through the waypoints part of the state, then introducing binary variables to enforce the constraint of passing once through each waypoint, and finally applying a fifth-degree Gauss–Lobatto direct collocation method to tackle the dynamic constraints. High-degree interpolation polynomials allow the number of variables of the problem to be reduced for a given numerical precision. The resulting mixed-integer nonlinear programming problem has been solved using a nonlinear programming-based branch-and-bound algorithm specifically tailored to the problem. The results of the numerical experiments have shown the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://projects.coin-or.org/svn/Bonmin

References

  1. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. The MIT Press, Boston (2005)

    Google Scholar 

  2. La Valle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Siciliano, B., Khatib, O. (eds.): Handbook of Robotics. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Sager, S.: Numerical methods for mixed-integer optimal control problems. Ph.D.Thesis, Universität Heidelberg (2006)

  5. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, Berlin (2009)

    Book  Google Scholar 

  6. Sager, S.: Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control. J. Process Control 19(8), 1238–1247 (2009)

    Article  Google Scholar 

  7. Gerdts, M.: Solving mixed-integer optimal control problems by branch & bound: a case study from automobile test-driving with gear shift. Optim. Control Appl. Methods 26(1), 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  8. Gerdts, M.: A variable time transformation method for mixed-integer optimal control problems. Optim. Control Appl. Methods 27(3), 169–182 (2006)

    Article  MathSciNet  Google Scholar 

  9. Buss, M., Glocker, M., Hardt, M., von Stryk, O., Bulirsch, R., Schmidt, G.: Nonlinear hybrid dynamical systems: Modeling, optimal control, and applications. In: S. Engell, G. Frehse, E. Schnieder (eds.) Modelling, Analysis and Design of Hybrid Systems, Lecture Notes in Control and Information Science, vol. 279, pp. 331–335. Springer, Berlin (2002)

  10. Loxton, R., Teo, K., Rehbock, V., Ling, W.: Optimal switching instants for a switched-capacitor DC/DC power converter. Automatica 45(4), 973–980 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, X., Antsaklis, P.J.: Optimal control of switched systems via nonlinear optimization based on direct differentiations of value functions. Int. J. Control 75(16/17), 1406–1426 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, X., Antsaklis, P.J.: Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Autom. Control 49(1), 2–16 (2004)

    Article  MathSciNet  Google Scholar 

  13. Shaikh, M., Caines, P.: On the hybrid optimal control problem: theory and algorithms. IEEE Trans. Autom. Control 52(9), 1587–1603 (2007)

    Article  MathSciNet  Google Scholar 

  14. Sussmann, H.J.: Maximum principle for hybrid optimal control problems. In: Proceedings of the IEEE Conference on Decision and Control (1999)

  15. Borrelli, F., Baotic, M., Bemporad, A., Morari, M.: Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41(10), 1709–1721 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hedlund, S., Rantzer, A.: Convex dynamic programming for hybrid systems. IEEE Trans. Autom. Control 47(9), 1536–1540 (2002)

    Article  MathSciNet  Google Scholar 

  17. Gapaillard, M.: Continuous representation and control of hybrid systems. Int. J. Control 81(1), 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bengea, S., DeCarlo, R.: Optimal control of switching systems. Automatica 41(1), 11–27 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Wei, S., Uthaichana, K., Žefran, M., DeCarlo, R., Bengea, S.: Applications of numerical optimal control to nonlinear hybrid systems. Nonlinear Anal. 1(2), 264–279 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Axelsson, H., Wardi, Y., Egerstedt, M., Verriest, E.: Gradient descent approach to optimal mode scheduling in hybrid dynamical systems. J. Optim. Theory Appl. 136(2), 167–186 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss–Lobatto quadrature rules. J. Guid. Control Dyn. 19(3), 592–599 (1996)

    Article  MATH  Google Scholar 

  23. Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dyn. 10(4), 338–342 (1987)

    Article  MATH  Google Scholar 

  24. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008)

    Article  MATH  Google Scholar 

  25. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Progr. 106(1), 25–57 (2006)

    Article  MATH  Google Scholar 

  26. Soler, M., Olivares, A., Staffetti, E.: Hybrid optimal control approach to commercial aircraft trajectory optimization. J. Guid. Control Dyn. 33(3), 985–991 (2010)

    Article  Google Scholar 

  27. Sahinidis, N.V.: BARON: A general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Boston (2002)

    Book  Google Scholar 

  29. Belotti, P., Lee, J., Liberti, L., Margot, F., Waechter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597 (2009)

    Google Scholar 

  30. Dakin, R.J.: A tree search algorithm for mixed programming problems. Comput. J. 8, 250–255 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems. Econometrica 28, 497–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. Leyffer, S.: User Manual for MINLP-BB. University of Dundee, Dundee (1998)

    Google Scholar 

  33. Bussieck, M.R., Drud, A.: SBB: A new solver for mixed integer nonlinear programming. Talk, OR 2001, Section “Continuous Optimization” (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Staffetti.

Additional information

Communicated by Felix L. Chernousko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 21 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonami, P., Olivares, A. & Staffetti, E. Energy-Optimal Multi-Goal Motion Planning for Planar Robot Manipulators. J Optim Theory Appl 163, 80–104 (2014). https://doi.org/10.1007/s10957-013-0516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0516-0

Keywords

Mathematics Subject Classification (2000)

Navigation