Skip to main content
Log in

Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We discuss recent positive experiences applying convex feasibility algorithms of Douglas–Rachford type to highly combinatorial and far from convex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Here indices are understood modulo N. That is, C N+1:=C 1.

  2. In this context, “feasibility” and “satisfiability” can be used interchangeably.

  3. See http://carma.newcastle.edu.au/DRmethods/comb-opt/2cycle.html for an animated version.

  4. Also known as McMahon Squares in honour of the great English combinatorialist, Percy MacMahon, who examined them nearly a century ago.

  5. Pulkit Bansal did this as a 2010 NSERC summer student with Heinz Bauschke and Xianfu Wang.

  6. Japanese, being based on ideograms, does not lead itself to anagrams, crosswords or other word puzzles; this in part explains why so many good numeric and combinatoric games originate in Japan.

  7. top95: http://magictour.free.fr/top95

  8. top1465: http://magictour.free.fr/top1465

  9. Gordon Royle: http://school.maths.uwa.edu.au/~gordon/sudokumin.php

  10. reglib-1.3: http://hodoku.sourceforge.net/en/libs.php

  11. ksudoku16/25: http://carma.newcastle.edu.au/DRmethods/comb-opt/

  12. KSudoku: http://games.kde.org/game.php?game=ksudoku

  13. Gurobi Sudoku model: http://www.gurobi.com/documentation/5.5/example-tour/node155

  14. YASS: http://yasudokusolver.sourceforge.net/

  15. DLX: http://cgi.cse.unsw.edu.au/~xche635/dlx_sodoku/

  16. Schaad’s web-based solver: https://people.ok.ubc.ca/bauschke/Jason/

  17. SudokuSolver: http://infohost.nmt.edu/tcc/help/lang/python/examples/sudoku/

  18. For the five solutions: http://carma.newcastle.edu.au/DRmethods/comb-opt/nasty_nonunique.txt

  19. If x n is the current iterate, x the solution, and m=max n P D x n x ∥, ∥P D x n x ∥/m is plotted against n.

  20. QR (quick response) codes are two-dimensional bar codes originally designed for use in the Japanese automobile industry. Their data is typically encoded in either numerical, alphanumerical, or binary formats.

References

  1. Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 964–979 (1979)

  3. Combettes, P.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borwein, J., Zhu, Q.: Techniques of Variational Analysis. CMS Books in Mathematics. Springer, New York (2005)

    MATH  Google Scholar 

  5. Borwein, J., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 93–109. Springer, Berlin (2011)

    Chapter  Google Scholar 

  6. Bauschke, H., Combettes, P., Luke, D.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127(2), 178–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H., Borwein, J.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Combettes, P., Pesquet, J.: A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)

    Article  Google Scholar 

  9. Gandy, S., Yamada, I.: Convex optimization techniques for the efficient recovery of a sparsely corrupted low-rank matrix. J. Math for Industry 2(5), 147–156 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Svaiter, B.F.: On weak convergence of the Douglas-Rachford method. SIAM J. Control Optim. 49(1), 280–287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yamada, I., Gandy, S., Yamagishi, M.: Sparsity-aware adaptive filtering based on a Douglas–Rachford splitting. In: Proc. EUSIPCO, pp. 1929–1933 (2011)

    Google Scholar 

  13. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  14. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73(4), 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Borwein, J.M., Tam, M.K.: The cyclic Douglas–Rachford method for inconsistent feasibility problems. Preprint (2013). arXiv:1310.2195

  16. Borwein, J., Tam, M.: A cyclic Douglas-Rachford iteration scheme. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0381-x

    Google Scholar 

  17. Bauschke, H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal.: Theory Methods Appl. 56(5), 715–738 (2004)

    Article  MATH  Google Scholar 

  18. Borwein, J., Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  19. Aragón Artacho, F., Borwein, J.: Global convergence of a non-convex Douglas–Rachford iteration. J. Glob. Optim. (2012), 17 pp. doi:10.1007/s10898-012-9958-4

    MATH  Google Scholar 

  20. Hesse, R., Luke, D.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. Preprint (2012). arXiv:1205.0318v1

  21. Bauschke, H., Luke, D., Phan, H., Wang, X.: Restricted normal cones and sparsity optimization with affine constraints. Found. Comput. Math. (2012), 21 pp. doi:10.1007/s10208-013-9161-0

    Google Scholar 

  22. Babu, P., Pelckmans, K., Stoica, P., Li, J.: Linear systems, sparse solutions, and Sudoku. IEEE Signal Process. Lett. 17(1), 40–42 (2010)

    Article  Google Scholar 

  23. Aragón Artacho, F., Borwein, J., Tam, M.: Douglas–Rachford feasibility methods for matrix completion problems (2013). Preprint arXiv:1308.4243

  24. Elser, V., Rankenburg, I.: Deconstructing the energy landscape: constraint-based algorithms for folding heteropolymers. Phys. Rev. E 73(2), 026,702 (2006)

    Article  Google Scholar 

  25. Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. 104(2), 418–423 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bauschke, H., Combettes, P., Luke, D.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19(7), 1334–1345 (2002)

    Article  MathSciNet  Google Scholar 

  27. Bauschke, H., Combettes, P., Luke, D.: Hybrid projection–reflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)

    Article  Google Scholar 

  28. Johnson, C.: Matirx completion problems: a survey. In: Proc. Sympos. Appl. Math., pp. 171–198 (1990)

  29. Schaad, J.: Modeling the 8-queens problem and Sudoku using an algorithm based on projections onto nonconvex sets. Master’s thesis, Univ. British Columbia (2010)

  30. Gravel, S., Elser, V.: Divide and concur: a general approach to constraint satisfaction. Phys. Rev. E 78(3), 036706 (2008)

    Article  Google Scholar 

  31. Garey, R., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. Freeman, New York (1979)

    MATH  Google Scholar 

  32. Takenaga, Y., Walsh, T.: Tetravex is NP-complete. Inf. Process. Lett. 99, 171–174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bansal, P.: Code for solving Tetravex using Douglas–Rachford algorithm (2010). http://people.ok.ubc.ca/bauschke/Pulkit/pulkitreport.pdf

  34. Takayuki, Y., Takahiro, S.: Complexity and completeness of finding another solution and its application to puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86(5), 1052–1060 (2003)

    Google Scholar 

  35. Nagao, T., Ueda, N.: NP-completeness results for nonogram via parsimonious reductions. Depart. Computer Science, Tokyo Inst. Technol. Tech. Rep. TR96-0008 (2012). CiteSeerX doi:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5277

  36. van Rijn, J.: Playing games: The complexity of Klondike, Mahjong, nonograms and animal chess. Master’s thesis, Leiden Inst. of Advanc. Computer Science, Leiden Univ. (2012)

  37. Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  38. Elser, V.: Private communication. August 27th (2012)

  39. Bosch, R.: Painting by numbers. Optima 65, 16–17 (2001)

    Google Scholar 

  40. Bačák, M., Searston, I., Sims, B.: Alternating projections in CAT(0) spaces. J. Math. Anal. Appl. 385(2), 599–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Searston, I., Sims, B.: Nonlinear analysis in geodesic metric spaces, in particular CAT(0) spaces. Preprint (2013)

Download references

Acknowledgements

We wish to thank Heinz Bauschke, Russell Luke, Ian Searston and Brailey Sims for many useful insights. We would also like to thank the anonymous referee for their helpful suggestions. Example 2.1 was provided by Brailey Sims.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Tam.

Additional information

Communicated by Michel Théra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragón Artacho, F.J., Borwein, J.M. & Tam, M.K. Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems. J Optim Theory Appl 163, 1–30 (2014). https://doi.org/10.1007/s10957-013-0488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0488-0

Keywords

Navigation