Skip to main content
Log in

Global Convergence of a Closed-Loop Regularized Newton Method for Solving Monotone Inclusions in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We analyze the global convergence properties of some variants of regularized continuous Newton methods for convex optimization and monotone inclusions in Hilbert spaces. The regularization term is of Levenberg–Marquardt type and acts in an open-loop or closed-loop form. In the open-loop case the regularization term may be of bounded variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The compact imbedding of BV([0,T]), the space of real-valued functions of bounded variation on [0,T] equipped with the topology of the intermediate convergence, into L 1(0,T) (see e.g. [10, Theorem 10.1.4], [11, 12]) yields a subsequence of λ n converging almost everywhere on [0,T].

References

  1. Attouch, H., Svaiter, B.F.: A continuous dynamical Newton-like approach to solving monotone inclusions. SIAM J. Control Optim. 49, 574–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez, A., Perez, J.M.: A dynamical system associated with Newton’s method for parametric approximations of convex minimization problems. Appl. Math. Optim. 38, 193–217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert. Elsevier, New York (1973)

    MATH  Google Scholar 

  4. Hoheisel, T., Kanzow, C., Mordukhovich, B.S., Phan, H.: Generalized Newton’s method based on graphical derivatives. Nonlinear Anal. 75, 1324–1340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke, F.: Discontinuous feedback and non-linear systems. In: Proc. IFAC Conf. Nonlinear Control (NOLCOS), Bologna, pp. 1–29 (2010)

    Google Scholar 

  6. Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. J. Math. Pures Appl. 81, 747–779 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Attouch, H., Maingé, P.E., Redont, P.: A second-order differential system with Hessian-driven damping; Application to non-elastic shock laws. Differ. Equ. Appl. 4, 27–65 (2012)

    MathSciNet  Google Scholar 

  8. Attouch, H., Redont, P.: The second-order in time continuous Newton method. In: Approximation, optimization and mathematical economics, pp. 25–36. Physica, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Maingé, P.E.: First order continuous Newton-like systems for monotone inclusions. Université des Antilles-Guyane, Martinique (2011). Preprint

  10. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. SIAM Series on Optimization. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  11. Ziemer, W.P.: Weakly Differentiable Functions. Springer, New York (1989)

    Book  MATH  Google Scholar 

  12. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  13. Moreau, J.J.: Bounded variation in time. In: Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.) Topics in Nonsmooth Mechanics, pp. 1–76. Birkhauser, Basel (1988)

    Google Scholar 

  14. Natanson, I.P.: Theory of functions of a real variable. Frederick Ungar, New York (1955)

    Google Scholar 

  15. Rockafellar, R.T.: Monotone operators associated with saddle-functions and mini-max problems. In: Browder, F. (ed.) Nonlinear Functional Analysis. Proceedings of Symposia in Pure Mathematics, vol. 18, pp. 241–250. Am. Math. Soc., Providence (1976)

    Chapter  Google Scholar 

  16. Attouch, H., Soueycatt, M.: Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to games, PDE’s and control. Pac. J. Optim. 5, 17–37 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Attouch, H., Briceno, L., Combettes, P.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)

    Article  MATH  Google Scholar 

  18. Levenberg, K.: A method for the solution of certain non-linear problems in the least squares. Q. Appl. Math. 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  19. Marquardt, D.W.: An algorithm for least squares estimation of non-linear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Minimization. Prentice-Hall, Englewood Cliffs (1983). Reprinted by SIAM Publications (1993)

    Google Scholar 

  21. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods for constrained non-linear equations with strong local convergence properties. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for non-linear least squares problems. IMM Technical, University of Denmark (2004). http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf

  23. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

H. Attouch and P. Redont are partially supported by ANR-08-BLAN-0294-03; B.F. Svaiter is partially supported by CNPq grants 302962/2011-5, 474944/2010-7, FAPERJ grant E-26/102.940/2011 and PRONEX-Optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Attouch.

Additional information

Communicated by Enrique Zuazua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attouch, H., Redont, P. & Svaiter, B.F. Global Convergence of a Closed-Loop Regularized Newton Method for Solving Monotone Inclusions in Hilbert Spaces. J Optim Theory Appl 157, 624–650 (2013). https://doi.org/10.1007/s10957-012-0222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0222-3

Keywords

Navigation