Skip to main content
Log in

Periodic Image Trajectories in Earth–Moon Space

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The problem of identifying orbits that enclose both the Earth and the Moon in a predictable way has theoretical relevance as well as practical implications. In the context of the restricted three-body problem with primaries in circular orbits, periodic trajectories exist and have the property that a third body (e.g. a spacecraft) can describe them indefinitely. Several approaches have been employed in the past for the purpose of identifying similar orbits. In this work the theorem of image trajectories, proven five decades ago, is employed for determining periodic image trajectories in Earth–Moon space. These trajectories exhibit two fundamental features: (i) counterclockwise departure from a perigee on the far side of the Earth, and (ii) counterclockwise arrival to a periselenum on the far side of the Moon. An extensive, systematic numerical search is performed, with the use of a modified Poincaré map, in conjunction with a numerical refinement process, and leads to a variety of periodic orbits, with various interesting features for possible future lunar missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth–Moon masses. NASA TR 32-1168 (1968)

  2. Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. Dyn. Astron. 7(4), 458–473 (1973)

    MATH  Google Scholar 

  3. Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241–253 (1980)

    Article  MATH  Google Scholar 

  4. Gomez, G., Marcote, M.: High-order analytical solutions of Hill’s equations. Celest. Mech. Dyn. Astron. 94(2), 197–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Howell, K.C., Pernicka, H.J.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. Dyn. Astron. 41(1–4), 107–124 (1987)

    Google Scholar 

  6. Gomez, G., Masdemont, J., Simo, C.: Quasihalo orbits associated with libration points. Celest. Mech. Dyn. Astron. 46(2), 135–176 (1998)

    MathSciNet  Google Scholar 

  7. Guibout, V., Scheeres, D.: Periodic orbits from generating functions. Adv. Astronaut. Sci. 116(2), 1029–1048 (2004)

    Google Scholar 

  8. Martin, C., Conway, B.A., Ibanez, P.: Optimal low-thrust trajectories to the interior Earth–Moon Lagrange point. In: Perozzi, E., Ferraz-Mello, S. (eds.) Space Manifold Dynamics, pp. 161–184. Springer, New York (2010)

    Chapter  Google Scholar 

  9. Pontani, M., Martin, C., Conway, B.A.: New numerical methods for determining periodic orbits in the circular restricted three-body problem. In: Proceedings of the 61st International Astronautical Congress, Prague (2010)

    Google Scholar 

  10. Miele, A.: Theorem of image trajectories in Earth–Moon space. Acta Astron. 6(5), 225–232 (1960)

    Google Scholar 

  11. Miele, A., Mancuso, S.: Optimal trajectories for Earth–Moon–Earth flight. Acta Astron. 49(2), 59–71 (2001)

    Article  Google Scholar 

  12. Roy, A.E.: Orbital Motion. IOP Publishing Ltd., London (2005)

    Google Scholar 

  13. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  14. Miele, A.: Revisit of the theorem of image trajectories in Earth–Moon space. J. Optim. Theory Appl. 147(3), 483–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schwaniger, A.J.: Trajectories in the Earth–Moon space with symmetric free-return properties. NASA Technical Note D-1833 (1963)

  16. Pontani, M., Conway, B.A.: Swarming theory applied to space trajectory optimization. In: Conway, B.A. (ed.) Spacecraft Trajectory Optimization, pp. 263–293. Cambridge University Press, New York (2010)

    Chapter  Google Scholar 

  17. Pontani, M., Conway, B.A.: Optimal space trajectories via particle swarm technique. Adv. Astronaut. Sci. 136, 53–72 (2010)

    Google Scholar 

  18. Pontani, M., Miele, A.: Periodic image trajectories in Earth–Moon space. Aero-astronautics report no. 369, Rice University (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Pontani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontani, M., Miele, A. Periodic Image Trajectories in Earth–Moon Space. J Optim Theory Appl 157, 866–887 (2013). https://doi.org/10.1007/s10957-012-0220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0220-5

Keywords

Navigation