Skip to main content
Log in

Multiobjective Stochastic Control in Fluid Dynamics via Game Theory Approach: Application to the Periodic Burgers Equation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The purpose of the present work is to implement well-known statistical decision and game theory strategies into multiobjective stochastic control problems of fluid dynamics. Such goal is first justified by the fact that deterministic (either singleobjective or multiobjective) control problems that are obtained without taking into account the uncertainty of the model are usually unreliable. Second, in most real-world problems, several goals must be satisfied simultaneously to obtain an optimal solution and, as a consequence, a multiobjective control approach is more appropriate. Therefore, we develop a multiobjective stochastic control algorithm for general fluid dynamics applications, based on the Bayes decision, adjoint formulation and the Nash equilibrium strategies. The algorithm is exemplified by the multiobjective stochastic control of a periodic Burgers equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basar, T.: Nash equilibria of risk-sensitive nonlinear stochastic differential games. J. Optim. Theory Appl. 100, 479–498 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gonzales-Alcon, C., Sicilia, J., Alvarez, J.A.: Nash equilibria in a differential game of economic growth. J. Optim. Theory Appl. 103, 197–210 (1999)

    Article  Google Scholar 

  3. Chen, G., Collins, S.S.: Optimal control for Burgers flow using the discontinuous Galerkin method. In: AIAA Region IV Student Paper Conference, Houston, TX (2003)

  4. Chen, G., Hussaini, M.Y.: Unsteady boundary control for optimal control of trailing edge noise. In: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, Massachusetts. AIAA paper 2006-2511, 8–10 May 2006

  5. Chambers, D.H., Adrian, R.J., Moin, P., Stewart, D.S.: Karhunen-Loeve expansions of Burgers’ model of turbulence. Phys. Fluids 10, 2573–2582 (1988)

    Article  Google Scholar 

  6. Kunisch, K., Volkwein, S.: Control of Burgers’ equation by a reduced order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102, 345–371 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dean, E.J., Gubernatis, P.: Pointwise control of the Burgers equation: a numerical approach. Comput. Math. Appl. 22, 93–100 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Choi, H., Temam, T., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509–543 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Glowinski, R., Lions, J.L.: Exact and approximate controllability for distributed parameter systems II. In: Iserles, A. (ed.) Acta Numerica, pp. 159–333. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  10. Berggren, M., Glowinski, R., Lions, J.L.: A computational approach to controlability issues for flow-related models, (i): Pointwise control of the viscous Burgers equation. Int. J. Comput. Fluid Dyn. 7, 237–252 (1996)

    Article  MATH  Google Scholar 

  11. Ramos, A.M., Glowinski, R., Periaux, J.: Pointwise control of the Burgers equation and related Nash equilibrium problems: computational approach. J. Optim. Theory Appl. 112, 499–516 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Walters, R.W., Huyse, L.: Uncertainty analysis for fluid mechanics with applications. NASA/CR-2002-211449, ICASE Report No. 2002-1 (2002)

  13. Huyse, L., Walters, R.W.: Random field solutions including boundary condition uncertainty for the steady-state generalized Burgers equation. ICASE Report 2001-35, NASA CR 2001-211239 (2001)

  14. Mathelin, L., Hussaini, M.Y.: A stochastic collocation algorithm for uncertainty analysis. NASA/CR-2003-212153 (2003)

  15. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Basa, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM, Philadelphia (1999)

    Google Scholar 

  17. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3, 233–260 (1988)

    Article  MATH  Google Scholar 

  18. Croicu, A.-M.: Computation of Nash equilibria: a gradient-type and relaxation-type method. Automat. Comput. Appl. Math. 8, 44–60 (1999)

    MathSciNet  Google Scholar 

  19. Bozma, H.I.: Computation of Nash equilibria: admissibility of parallel gradient descent. J. Optim. Theory Appl. 90, 45–61 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Astrom, K.J.: Introduction to Stochastic Control Theory. Academic Press, San Diego (1970)

    Google Scholar 

  21. Kian, A.R., Cruz Jr., J.B., Simaan, M.A.: Stochastic discrete-time Nash games with constrained state estimators. J. Optim. Theory Appl. 114, 171–188 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pratt, J.W., Raiffa, H., Schlaifer, R.: Introduction to Statistical Decision Theory. MIT Press, Cambridge (1996)

    Google Scholar 

  23. Billingsley, P.: Probability and Measure. Wiley, New York (1986)

    MATH  Google Scholar 

  24. Croicu, A.M.: Single- and multiple-objective stochastic programming models with applications to aerodynamics. Ph.D. Thesis, Florida State University (2005)

  25. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  26. Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Croicu.

Additional information

Communicated by R. Glowinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croicu, A.M., Hussaini, M.Y. Multiobjective Stochastic Control in Fluid Dynamics via Game Theory Approach: Application to the Periodic Burgers Equation. J Optim Theory Appl 139, 501–514 (2008). https://doi.org/10.1007/s10957-008-9416-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9416-0

Keywords

Navigation