, Volume 21, Issue 1, pp 114-124
Date: 18 Feb 2011

The Effects of a Model-Based Physics Curriculum Program with a Physics First Approach: a Causal-Comparative Study

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The purpose of this study is to examine the effects of a model-based introductory physics curriculum on conceptual learning in a Physics First (PF) Initiative. This is the first comparative study in physics education that applies the Rasch modeling approach to examine the effects of a model-based curriculum program combined with PF in the United States. Five teachers and 301 students (in grades 9 through 12) in two mid-Atlantic high schools participated in the study. The students’ conceptual learning was measured by the Force Concept Inventory (FCI). It was found that the ninth-graders enrolled in the model-based program in a PF initiative achieved substantially greater conceptual understanding of the physics content than those 11th-/12th-graders enrolled in the conventional non-modeling, non-PF program (Honors strand). For the 11th-/12th-graders enrolled in the non-PF, non-honors strands, the modeling classes also outperformed the conventional non-modeling classes. The instructional activity reports by students indicated that the model-based approach was generally implemented in modeling classrooms. A closer examination of the field notes and the classroom observation profiles revealed that the greatest inconsistencies in model-based teaching practices observed were related to classroom interactions or discourse. Implications and recommendations for future studies are also discussed.