Skip to main content

Advertisement

Log in

Entropy Flow in Near-Critical Quantum Circuits

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Near-critical quantum circuits close to equilibrium are ideal physical systems for asymptotically large-scale quantum computers, because their low energy collective excitations evolve reversibly, effectively isolated from microscopic environmental fluctuations by the renormalization group. Entropy flows in near-critical quantum circuits near equilibrium as a locally conserved quantum current, obeying circuit laws analogous to the electric circuit laws. These “Kirchhoff laws” for entropy flow are the fundamental design constraints for asymptotically large-scale quantum computers. A quantum circuit made from a near-critical system (of conventional type) is described by a relativistic 1+1 dimensional relativistic quantum field theory on the circuit. The quantum entropy current near equilibrium is just the energy current divided by the temperature. The universal properties of the energy–momentum tensor constrain the entropy flow characteristics of the circuit components: the entropic conductivity of the quantum wires and the entropic admittance of the quantum circuit junctions. For example, near-critical quantum wires are always resistanceless inductors for entropy. A universal formula is derived for the entropic conductivity: \(\sigma _{S}(\omega ) = iv^{2} {\mathcal {S}}/\omega T \), where \(\omega \) is the frequency, T the temperature, \({\mathcal {S}}\) the equilibrium entropy density and v the velocity of “light”. The thermal conductivity is \({\mathbf {Re}}(T\sigma _{S}(\omega ))=\pi v^{2} {\mathcal {S}}\, \delta (\omega )\). The thermal Drude weight is, universally, \(v^{2}{\mathcal {S}}\). This gives a way to measure the entropy density directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Affleck, I.: Universal term in the free energy at a critical point and the conformal anomaly. Phys. Rev. Lett. 56, 746–748 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. Affleck, I., Ludwig, A.W.: Universal noninteger “ground state degeneracy” in critical quantum systems. Phys. Rev. Lett. 67, 161 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Benioff, P.: Quantum mechanical hamiltonian models of turing machines. J. Stat. Phys. 29, 515–546 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Benioff, P.: Quantum mechanical hamiltonian models of turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1581–1585 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernard, D., Doyon, B.: Conformal field theory out of equilibrium: a review. J. Stat. Mech. Theory Exp. 2016(6), 064005 (2016)

    Article  MathSciNet  Google Scholar 

  7. Blöte, H., Cardy, J., Nightingale, M.: Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. Phys. Rev. Lett. 56, 742–745 (1986)

    Article  ADS  Google Scholar 

  8. Calabrese, P., Essler, F.H.L., Mussardo, G.: Quantum integrability in out of equilibrium systems. Journal of Statistical Mechanics: Theory and Experiment 2016(6), 064,001 (2016)

  9. Cappelli, A., Friedan, D., Latorre, J.I.: C theorem and spectral representation. Nucl. Phys. B 352, 616–670 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  11. Chamon, C., Oshikawa, M., Affleck, I.: Junctions of three quantum wires and the dissipative hofstadter model. Phys. Rev. Lett. 91, 206403 (2003)

    Article  ADS  Google Scholar 

  12. DiFrancesco, P., Mathieu, P., Senechal, D.: Conformal Field Theory. Springer, New York (1997)

    Book  Google Scholar 

  13. Dixon, L., Ginsparg, P., Harvey, J.: Beauty and the beast:superconformal symmetry in a monster module. Commun. Math. Phys. 119, 221–241 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics Volume 134. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  15. Frenkel, I.B., Lepowsky, J., Meurman, A.: A natural representation of the fischer-griess monster with the modular function j as a character. Proc. Natl Acad. Sci. USA 81, 3256–3260 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Frenkel, I.B., Lepowsky, J., Meurman, A.: A moonshine module for the monster. In: J. Lepowsky, S. Mandelstam, I. Singer (eds.) Vertex Operators in Mathematics and Physics—Proceedings of a Conference November 10–17, 1983, no. 3 in Publications of the Mathematical Sciences Research Institute, pp. 231–273. Springer, New York (1985)

  17. Friedan, D.: Entropy flow in near-critical quantum circuits (2005). arXiv:cond-mat/0505084

  18. Friedan, D.: Entropy flow through near-critical circuit junctions (2005). arXiv:cond-mat/0505085

  19. Friedan, D.: Entropy flow through near-critical guantum junctions. J. Stat. Phys. (2017). doi:10.1007/s10955-017-1752-8

  20. Friedan, D., Konechny, A.: Boundary entropy of one-dimensional quantum systems at low temperature. Phys. Rev. Lett. 93, 030402 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. Friedan, D., Qiu, Z., Shenker, S.: Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52, 1575–1578 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Friedan, D., Qiu, Z., Shenker, S.: Conformal invariance, unitarity and two dimensional critical exponents. In: J. Lepowsky, S. Mandelstam, I. Singer (eds.) Vertex Operators in Mathematics and Physics - Proceedings of a Conference November 10-17, 1983, no. 3 in Publications of the Mathematical Sciences Research Institute, pp. 419–449. Springer, New York (1985)

  23. Friedan, D., Shenker, S.: Supersymmetric critical phenomena and the two dimensional gaussian model (1986). preprint, Enrico Fermi Institute, reprinted in Conformal Invariance and Applications to Statistical Mechanics, eds. C. Itzykson, H. Saleur, and J.B. Zuber (World Scientific, Singapore, 1988), pp. 578–579

  24. Gibbs, J.W.: Letter to the secretary of the electrolysis committee of the british association for the advancement of science. Report Brit. Asso. Adv. Sci. pp. 343–346 (1888). Reprinted in The Collected Works of J. Willard Gibbs, Yale University Press (New Haven, 1928, 1948), vol. 1, pp. 408-412

  25. Klümper, A., Sakai, K.: The thermal conductivity of the spin-1/2 xxz chain at arbitrary temperature. J. Phys. A 35(9), 2173 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 3, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luttinger, J.M.: Theory of thermal transport coefficients. Phys. Rev. 135, A1505–A1514 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  28. McLennan, J.A.: The Formal Statistical Theory of Transport Processes, pp. 261–317. Wiley, New York (2007)

    Google Scholar 

  29. Orignac, E., Chitra, R., Citro, R.: Thermal transport in one-dimensional spin gap systems. Phys. Rev. B67(13), 134426 (2003)

    Article  ADS  Google Scholar 

  30. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  31. Sachdev, S.: Quantum phase transitions. In: Fraser, G. (ed.) The New Physics For the Twenty-First Century, 2nd edn. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  32. Zamolodchikov, A.B.: Thermodynamic bethe ansatz in relativistic models. Scaling three state potts and lee-yang models. Nucl. Phys. B342, 695–720 (1990)

    Article  ADS  Google Scholar 

  33. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultants Bureau, New York (1974)

    Google Scholar 

Download references

Acknowledgements

I thank A. Konechny for many discussions. I thank the members of an informal Rutgers seminar—S. Ashok, A. Ayyer, D. Belov, E. Dell’Aquila, B. Doyon, and R. Essig—for listening to a preliminary version of this work, and for their comments and questions. I thank M. Douglas and G. Moore for reminding me that the monster conformal field theory is an example of a completely stable renormalization group fixed point in 1+1 dimensions, and G. Moore for pointing out [13]. I thank S. Lukyanov for pointing towards some of the condensed matter literature, leading in particular to [27, 29]. I thank N. Andrei for helpful comments on the manuscript and for explaining to me that there are quantum critical phenomena which are not described by relativistic quantum field theories. This work was supported by the Rutgers New High Energy Theory Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Friedan.

Additional information

In memory of Leo Kadanoff.

This is the first part of a two-part work originally published on arXiv.org in 2005 as [17, 18]. The second part follows in this volume [19]. For the present republication, some revisions have been made for clarity, following helpful suggestions of the referee.

Appendices

Appendix 1: Equal-Time Commutators of \(T_{t}^{t}(x,t)\) and \(T_{x}^{t}(x,t)\)

The universal equal-time commutators of the energy and momentum densities

$$\begin{aligned} \frac{i}{\hbar } {[}T_{t}^{t}(x',t), \,T_{t}^{t}(x,t){]}= & {} -\partial _{x}\delta (x'-x) 2 T_{t}^{x}(x,t) - \delta (x'-x) \partial _{x} T_{t}^{x}(x,t) \end{aligned}$$
(106)
$$\begin{aligned} \frac{i}{\hbar } {[}T_{x}^{t}(x',t), \,T_{x}^{t}(x,t){]}= & {} \partial _{x}\delta (x'-x) 2 T_{x}^{t}(x,t) + \delta (x'-x) \partial _{x} T_{x}^{t}(x,t) \end{aligned}$$
(107)
$$\begin{aligned} \frac{i}{\hbar } {[}T_{t}^{t}(x',t), \,T_{x}^{t}(x,t){]}= & {} - \frac{c_{ U V}}{6} \frac{\hbar v}{2\pi } \partial _{x}^{3} \delta (x'-x) +\partial _{x}\delta (x'-x) [T_{t}^{t}(x,t)-T_{x}^{x}(x,t)] \nonumber \\&\qquad \qquad {} -\delta (x'-x)\partial _{x}T_{x}^{x}(x,t) \end{aligned}$$
(108)

are derived here from the Ward identities for the operator product of two energy–momentum tensors. The number \(c_{ U V}\) is the bulk conformal central charge at short-distance.

Make an infinitesimal local variation of the space-time metric, \(g_{\mu \nu }\rightarrow g_{\mu \nu } + \delta g_{\mu \nu }(x,t)\), combined with an infinitesimal space-time transformation, \(x^{\mu }\rightarrow x^{\mu }+\delta x^{\mu }(x,t)\). The combined change in the metric is

$$\begin{aligned} g_{\mu \nu }\rightarrow g_{\mu \nu } +\partial _{\mu }(\delta x_{\nu }) +\partial _{\nu }(\delta x_{\mu }) + \delta g_{\mu \nu } + \delta x^{\alpha }\partial _{\alpha }(\delta g_{\mu \nu }) + \partial _{\mu }(\delta x^{\alpha })\delta g_{\alpha \nu } + \partial _{\nu }(\delta x^{\alpha })\delta g_{\mu \alpha } \,. \end{aligned}$$
(109)

Vary \(\ln Z\), keeping terms that are first order in \(\delta x^{\mu }\) and in \(\delta g_{\mu \nu }\), to obtain the Ward identity on the time-ordered product of two energy–momentum tensors:

$$\begin{aligned} \frac{i}{\hbar }\,\partial '_{\mu '} \, t\{ T_{\nu '}^{\mu '}(x',t') \,T_{\nu }^{\mu }(x,t) \}= & {} \partial _{\alpha }\left[ \delta (x'-x)\delta (t'-t)\right] \left( \delta ^{\alpha }_{\nu '} T_{\nu }^{\mu } -g_{\nu '\nu }g^{\alpha \beta }T_{\beta }^{\mu } -\delta ^{\mu }_{\nu '} T^{\alpha }_{\nu } \right) (x,t) \nonumber \\&\qquad + \delta (x'-x)\delta (t'-t) \partial _{\nu '}T_{\nu }^{\mu }(x,t) \,. \end{aligned}$$
(110)

Integrate both sides of the Ward identity over \(t'\) from \(t-\epsilon \) to \(t+\epsilon \) to obtain:

$$\begin{aligned}&{ \frac{i}{\hbar }{[}T_{\nu '}^{t}(x',t), \,T_{\nu }^{\mu }(x,t) {]} + \partial _{x'}\, \int _{t-\epsilon }^{t+\epsilon } \mathrm {d}t' \,\, \frac{i}{\hbar }\, t\{ T_{\nu '}^{x}(x',t') \,T_{\nu }^{\mu }(x,t) \} =} \nonumber \\&\int _{t-\epsilon }^{t+\epsilon } \mathrm {d}t' \,\, \bigg \{ \partial _{\alpha }\left[ \delta (x'-x)\delta (t'-t)\right] \left( \delta ^{\alpha }_{\nu '} T_{\nu }^{\mu } -g_{\nu '\nu }g^{\alpha \beta }T_{\beta }^{\mu } -\delta ^{\mu }_{\nu '} T^{\alpha }_{\nu } \right) (x,t) \nonumber \\&\qquad \qquad \qquad {}+ \delta (x'-x)\delta (t'-t) \partial _{\nu '}T_{\nu }^{\mu }(x,t) \bigg \} \,. \end{aligned}$$
(111)

The time integral on the lhs picks out the contact terms in the time-ordered operator product. The energy–momentum tensor has scaling dimension 2, so the contribution of the contact terms has the form:

$$\begin{aligned}&{ \int _{t-\epsilon }^{t+\epsilon } \mathrm {d}t' \,\, \frac{i}{\hbar }\, t\{ T_{\nu '}^{\mu '}(x',t') \,T_{\nu }^{\mu }(x,t) \} = } \nonumber \\&\int _{t-\epsilon }^{t+\epsilon } \mathrm {d}t' \,\, \left[ C_{\nu '\nu }^{\mu '\mu \alpha \beta } \partial _{\alpha }\partial _{\beta } +B_{\nu '\nu }^{\mu '\mu \alpha }(x,t) \partial _{\alpha } + A_{\nu '\nu }^{\mu '\mu }(x,t) \right] \left[ \delta (x'-x)\delta (t'-t)\right] \quad \end{aligned}$$
(112)

for some operator-valued tensors A, B, C. The operators \(C_{\nu '\nu }^{\mu '\mu \alpha \beta }\) have scaling dimension 0, so are multiples of the identity.

By (111) and (112), the equal-time commutators of the energy and momentum densities are:

$$\begin{aligned} \frac{i}{\hbar } {[}T^{t}_{\nu '}(x',t), \,T^{t}_{\nu }(x,t){]}= & {} c_{\nu '\nu }\partial _{x}^{3}\delta (x'-x) + b_{\nu '\nu }(x,t) \partial _{x}^{2}\delta (x'-x) \nonumber \\&{}+ \left( \delta _{\nu '}^{x} T_{\nu }^{t} - \delta _{\nu '}^{t} T_{\nu }^{x} -g_{\nu '\nu } T_{x}^{t} +a_{\nu '\nu } \right) (x,t) \partial _{x}\delta (x'-x) \nonumber \\&{}+\partial _{\nu '}T_{\nu }^{t}(x,t) \delta (x'-x) \end{aligned}$$
(113)

where \(a_{\nu '\nu }=A^{tt}_{\nu '\nu }\), \(b_{\nu '\nu }=B_{\nu '\nu }^{ttxx}\), and \(c_{\nu '\nu }=C_{\nu '\nu }^{ttxx}\).

The antisymmetry of the commutators is equivalent to:

$$\begin{aligned} 0= & {} c_{\nu '\nu }-c_{\nu \nu '}\end{aligned}$$
(114)
$$\begin{aligned} 0= & {} b_{\nu '\nu }+b_{\nu \nu '} \end{aligned}$$
(115)
$$\begin{aligned} 0= & {} \partial _{x} (a_{xx}-2T^{t}_{x}) \end{aligned}$$
(116)
$$\begin{aligned} 0= & {} \partial _{x} a_{tt} \end{aligned}$$
(117)
$$\begin{aligned} 0= & {} \partial _{x} (a_{xt}+a_{tx}+T^{x}_{x}-T^{t}_{t}) \end{aligned}$$
(118)
$$\begin{aligned} 0= & {} a_{tx}-a_{xt} - 2 \partial _{x}b_{tx} -T_{t}^{t} - T_{x}^{x} \,. \end{aligned}$$
(119)

Therefore \(b_{xx}=b_{tt}=0\), \(b_{xt}=-b_{tx}\), and, up to multiples of the identity operator,

$$\begin{aligned} a_{xx}= & {} 2T^{t}_{x} \end{aligned}$$
(120)
$$\begin{aligned} a_{tt}= & {} 0 \end{aligned}$$
(121)
$$\begin{aligned} a_{xt}= & {} \partial _{x}b_{tx}- T^{x}_{x} \end{aligned}$$
(122)
$$\begin{aligned} a_{tx}= & {} \partial _{x}b_{tx} + T^{t}_{t} \,. \end{aligned}$$
(123)

Ignoring multiples of the identity operator for the time being, the only unknown is the operator \(b_{tx}(x,t)\). The equal-time commutators are, up to multiples of the identity,

$$\begin{aligned} \frac{i}{\hbar } {[}T_{t}^{t}(x',t), \,T_{t}^{t}(x,t){]}= & {} -\partial _{x}\delta (x'-x) 2 T_{t}^{x}(x,t) - \delta (x'-x) \partial _{x} T_{t}^{x}(x,t) \end{aligned}$$
(124)
$$\begin{aligned} \frac{i}{\hbar } {[}T_{x}^{t}(x',t), \,T_{x}^{t}(x,t){]}= & {} \partial _{x}\delta (x'-x) 2 T_{x}^{t}(x,t) + \delta (x'-x) \partial _{x} T_{x}^{t}(x,t) \end{aligned}$$
(125)
$$\begin{aligned} \frac{i}{\hbar } {[}T_{t}^{t}(x',t), \,T_{x}^{t}(x,t){]}= & {} +\partial _{x}\delta (x'-x) (T_{t}^{t}-T_{x}^{x})(x,t) -\delta (x'-x)\partial _{x}T_{x}^{x}(x,t) \nonumber \\&+ \partial _{x} \left[ \partial _{x}\delta (x'-x) b_{tx}(x,t) \right] \,. \end{aligned}$$
(126)

Take the time derivative of both sides of (124). In the time derivative of (124), use (126) to evaluate the commutators. The equation that results is:

$$\begin{aligned} 0 = 2 \partial _{x}^{3}\delta (x'-x)b_{tx}(x,t) +3 \partial _{x}^{2}\delta (x'-x)\partial _{x}b_{tx}(x,t) +\partial _{x}\delta (x'-x)\partial _{x}^{2}b_{tx}(x,t) \,. \end{aligned}$$
(127)

So \(b_{tx}(x,t)=0\).

Equations (124126), with \(b_{tx}(x,t)=0\), give the equal-time commutators up to multiples of the identity. These are exactly (106108), up to multiples of the identity. So all that remains is to determine the multiples of the identity operator that appear in the equal-time commutators.

The terms proportional to the identity operator in (106108) are determined by evaluating the expectation values of the equal-time commutators in the ground-state. The spectral representation of the ground-state two-point function of the energy–momentum tensor is: [9]

$$\begin{aligned}&\bigg \langle \big |\frac{i}{\hbar }\, t \{ T_{\nu '}^{\mu '}(x',t') \, T_{\nu }^{\mu }(x,t) \}\big | \bigg \rangle = \int _{0}^{\infty } \mathrm {d}(m^{2})\,\rho _{c}(m^{2}) \; G^{\mu '\mu }_{\nu '\nu }(x'-x,t'-t;m^{2})\quad \end{aligned}$$
(128)
$$\begin{aligned}&G^{\mu '\mu }_{\nu '\nu }(x,t;\mu ) = \frac{1}{(2\pi )^{2}} \int \int \mathrm {d}p_{x}\mathrm {d}p_{t} \,\, \mathrm {e}^{i p_{x}x +i p_{t}t} \frac{(p_{\nu '}p^{\mu '}-\delta _{\nu '}^{\mu '}p^{2}) (p_{\nu }p^{\mu }-\delta _{\nu }^{\mu }p^{2})}{p_{\mu }p^{\mu }+m^{2}+i\epsilon }.\nonumber \\ \end{aligned}$$
(129)

The conformal central charge in the short distance limit, \(c_{ U V}\), is given by

$$\begin{aligned} \int \mathrm {d}(m^{2})\,\rho _{c}(m^{2}) =\frac{c_{ U V}}{6} \frac{\hbar v}{2\pi } \,. \end{aligned}$$
(130)

Extract the equal-time commutator from (128) by evaluating at \(t'=t+\epsilon \) and at \(t'=t-\epsilon \) and taking the difference:

$$\begin{aligned}&{ \big \langle 0| \, \frac{i}{\hbar }\,{[}T_{\nu '}^{\mu '}(x',t)\,T_{\nu }^{\mu }(x,t){]} \, |0\big \rangle = \int _{0}^{\infty } \mathrm {d}(m^{2})\,\rho _{c}(m^{2}) \,\,\frac{1}{2\pi } \int \mathrm {d}p_{x} \,\, \mathrm {e}^{i p_{x}(x'-x)} } \nonumber \\&\qquad \qquad \frac{1}{2\pi } \int \mathrm {d}p_{t} \,\, \frac{\mathrm {e}^{ip_{t}\epsilon } - \mathrm {e}^{-ip_{t}\epsilon }}{p_{\mu }p^{\mu }+m^{2}+i\epsilon } \left[ (p_{\nu '}p^{\mu '}-\delta _{\nu '}^{\mu '}p^{2}) (p_{\nu }p^{\mu }-\delta _{\nu }^{\mu }p^{2}) \right] \,. \end{aligned}$$
(131)

In particular,

$$\begin{aligned} \big \langle 0| \, \frac{i}{\hbar }{[}T_{t}^{t}(x',t)\,T_{t}^{t}(x,t){]} \, |0\big \rangle= & {} 0 \end{aligned}$$
(132)
$$\begin{aligned} \big \langle 0| \, \frac{i}{\hbar }{[}T_{x}^{t}(x',t)\,T_{x}^{t}(x,t){]} \, |0\big \rangle= & {} 0 \end{aligned}$$
(133)
$$\begin{aligned} \big \langle 0| \, \frac{i}{\hbar }{[}T_{t}^{t}(x',t)\,T_{x}^{t}(x,t){]} \, |0\big \rangle= & {} - \partial _{x}^{3} \delta (x'-x) \frac{c_{ U V}}{6} \frac{\hbar v}{2\pi } \,. \end{aligned}$$
(134)

This fixes the terms proportional to the identity operator in (106108), finishing their derivation.

Appendix 2: \(\sigma _{S}(\omega )= iv^{2} {\mathcal {S}}/\omega T \) from the Kubo formula

The Kubo formula for the entropy current induced in a wire by an entropic potential \(\Delta V_{S}(x,t)\) is

$$\begin{aligned} \Delta \langle j_{S}(x_{2},t_{2}) \rangle= & {} \int _{-\infty }^{t_{2}}\mathrm {d}t_{1} \,\, \langle \frac{i}{\hbar }{[}\Delta H(t_{1}), j_{S}(x_{2},t_{2}){]} \rangle _{ eq } \nonumber \\= & {} \int _{-\infty }^{t_{2}}\mathrm {d}t_{1} \,\, \langle \frac{i}{\hbar }{[}\int \mathrm {d}x_{1}\, \Delta V_{S}(x_{1},t_{1}) \rho _{S}(x_{1},t_{1}), j_{S}(x_{2},t_{2}){]} \rangle _{ eq } \,. \end{aligned}$$
(135)

The Kubo formula is the solution of the time evolution equation, (49), in the linear response approximation.

For an alternating entropic potential, \( \Delta V_{S}(x,t)=\mathrm {e}^{iqx-i\omega t}\Delta V_{S}(0,0) \), the induced current is

$$\begin{aligned} \Delta \langle j_{S}(x,t) \rangle =\sigma _{S}(q,\omega ) \Delta E_{S}(x,t) \end{aligned}$$
(136)

where \(\Delta E_{S}(x,t) = -iq \Delta V_{S}(x,t)\). The Kubo formula for the entropic conductivity is

$$\begin{aligned} \sigma _{S}(q,\omega )= & {} \frac{i}{q} \int \mathrm {d}x_{1}\, \int _{-\infty }^{t_{2}}\mathrm {d}t_{1} \,\, \mathrm {e}^{i\omega (t_{2}- t_{1})-iq(x_{2}-x_{1})} \bigg \langle \frac{i}{\hbar }{[} \rho _{S}(x_{1},t_{1}), j_{S}(x_{2},t_{2}){]}\bigg \rangle _{eq} \nonumber \\= & {} k^{2}\beta ^{2} \frac{i}{q} \int \mathrm {d}x_{1}\, \int _{-\infty }^{t_{2}}\mathrm {d}t_{1} \,\, \mathrm {e}^{i\omega (t_{2}- t_{1})-iq(x_{2}-x_{1})}\nonumber \\&\qquad \qquad \qquad \qquad \qquad \bigg \langle \frac{i}{\hbar }{[} T_{t}^{t}(x_{1},t_{1}), T_{t}^{x}(x_{2},t_{2}){]}\bigg \rangle _{eq} \,. \end{aligned}$$
(137)

Introduce the Fourier transform of the energy–momentum tensor:

$$\begin{aligned} \tilde{T}_{\nu }^{\mu }(p,\eta ) = \int \mathrm {d}x \int \mathrm {d}t \; \mathrm {e}^{i(\eta t-p x)} T_{\nu }^{\mu }(x,t) \,. \end{aligned}$$
(138)

Write its two-point functions:

$$\begin{aligned} \langle \tilde{T}_{\nu '}^{\mu '}(p',\eta ') \, \tilde{T}_{\nu }^{\mu }(p,\eta ) \rangle _{eq}= (2\pi )^{2} \delta (p'+p) \delta (\eta '+\eta ) G_{\nu '\nu }^{\mu '\mu }(p,\eta ) \,. \end{aligned}$$
(139)

The equilibrium expectation values of the commutators are given by

$$\begin{aligned} \bigg \langle \frac{i}{\hbar }{[} \tilde{T}_{\nu '}^{\mu '}(p',\eta ') \, \tilde{T}_{\nu }^{\mu }(p,\eta ){]} \bigg \rangle _{eq} = (2\pi )^{2} \delta (p'+p) \delta (\eta '+\eta ) \frac{i}{\hbar }\left( 1-\mathrm {e}^{\beta \hbar \eta } \right) G_{\nu '\nu }^{\mu '\mu }(p,\eta ).\nonumber \\ \end{aligned}$$
(140)

The Kubo formula becomes

$$\begin{aligned} \sigma _{S}(q,\omega ) = \frac{k^{2}\beta ^{2}}{\hbar } \int \mathrm {d}\eta \; \frac{1}{\omega +i\epsilon -\eta } \left( 1-\mathrm {e}^{\beta \hbar \eta } \right) \frac{1}{iq} G_{tt}^{tx}(q,\eta ) \,. \end{aligned}$$
(141)

Conservation and symmetry of the energy–momentum tensor imply

$$\begin{aligned} \eta \tilde{T}_{t}^{x}(q,\eta ) = -v^{2} q \tilde{T}_{x}^{x}(q,\eta ) \end{aligned}$$
(142)

so

$$\begin{aligned} \frac{1}{q} G_{tt}^{tx}(q,\eta ) = - \frac{v^{2}}{\eta } G_{tx}^{tx}(q,\eta ) \end{aligned}$$
(143)

so

$$\begin{aligned} \sigma _{S}(q,\omega ) = k^{2}v^{2}\beta ^{3} \int \mathrm {d}\eta \; \frac{i}{\omega +i\epsilon -\eta } \left( 1-\mathrm {e}^{\beta \hbar \eta } \right) \frac{1}{\beta \hbar \eta } G_{tx}^{tx}(q,\eta ) \,. \end{aligned}$$
(144)

In the uniform limit, \(q\rightarrow 0\),

$$\begin{aligned} \lim _{q\rightarrow 0} G_{tx}^{tx}(q,\eta ) = \delta (\eta ) \langle H_{0}\, T_{x}^{x}(x,t) \rangle _{ eq } = -\delta (\eta ) \frac{\partial }{\partial \beta }\langle T_{x}^{x}(x,t) \rangle _{ eq } \end{aligned}$$
(145)

so

$$\begin{aligned} \sigma _{S}(\omega ) =\lim _{q\rightarrow 0} \sigma _{S}(q,\omega ) = k^{2}v^{2}\beta ^{3} \frac{i}{\omega +i\epsilon } \frac{\partial }{\partial \beta }\langle T_{x}^{x}(x,t) \rangle _{ eq } \end{aligned}$$
(146)

The equilibrium entropy density is [see (75]:

$$\begin{aligned} {\mathcal {S}}= k\beta ^{2} \frac{\partial }{\partial \beta }\langle T_{x}^{x}(x,t) \rangle _{ eq } \end{aligned}$$
(147)

so

$$\begin{aligned} \sigma _{S}(\omega ) = \frac{i k\beta v^{2}{\mathcal {S}}}{\omega } \,. \end{aligned}$$
(148)

The thermal conductivity is

$$\begin{aligned} \kappa (\omega ,T) = {\mathbf {Re}}( T \sigma _{S}(\omega )) = \pi v^{2} {\mathcal {S}}\delta (\omega ) \,. \end{aligned}$$
(149)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedan, D. Entropy Flow in Near-Critical Quantum Circuits. J Stat Phys 167, 827–853 (2017). https://doi.org/10.1007/s10955-017-1751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1751-9

Keywords

Navigation