Skip to main content
Log in

Mathematical Formalism of Nonequilibrium Thermodynamics for Nonlinear Chemical Reaction Systems with General Rate Law

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper studies a mathematical formalism of nonequilibrium thermodynamics for chemical reaction models with N species, M reactions, and general rate law. We establish a mathematical basis for J. W. Gibbs’ macroscopic chemical thermodynamics under G. N. Lewis’ kinetic law of entire equilibrium (detailed balance in nonlinear chemical kinetics). In doing so, the equilibrium thermodynamics is then naturally generalized to nonequilibrium settings without detailed balance. The kinetic models are represented by a Markovian jumping process. A generalized macroscopic chemical free energy function and its associated balance equation with nonnegative source and sink are the major discoveries. The proof is based on the large deviation principle of this type of Markov processes. A general fluctuation dissipation theorem for stochastic reaction kinetics is also proved. The mathematical theory illustrates how a novel macroscopic dynamic law can emerges from the mesoscopic kinetics in a multi-scale system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.F., Kurtz, T.G.: Stochastic Analysis of Biochemical Systems. Springer, New York (2015)

    Book  MATH  Google Scholar 

  2. Anderson, D.F., Craciun, G., Gopalkrishnan, M., Wiuf, C.: Lyapunov functions, stationary distributions, and non-equilibrium potential for reaction networks. Bullet. Math. Biol. 77, 1744–1767 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, P.W.: More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972)

    Article  ADS  Google Scholar 

  4. Arnold, V.I.: Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics), 2nd edn. Springer, New York (1997)

    Google Scholar 

  5. Beard, D.A., Qian, H.: Relationship between thermodynamic driving force and one-way fluxes in reversible chemical reactions. PLoS ONE 2, e144 (2007)

    Article  ADS  Google Scholar 

  6. Beard, D.A., Qian, H.: Chemical Biophysics: Quantitative Analysis of Cellular Systems. Cambridge University Press, Cambridge, UK (2008)

    Book  MATH  Google Scholar 

  7. Bennett, C.H.: Notes on Landauer’s principle, reversible computation and Maxwell’s demon. Stud. Hist. Phil. Mod. Phys. 34, 501–510 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chow, S.-N., Huang, W., Li, Y., Zhou, H.: Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203, 969–1008 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Delbrück, M.: Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120–124 (1940)

    Article  ADS  Google Scholar 

  10. Doob, J.L.: Markoff chains—denumerable case. Trans. Am. Math. Soc. 58, 455–473 (1945)

    MATH  MathSciNet  Google Scholar 

  11. Esposito, M., van den Broeck, C.: Three detailed fluctuation theorems. Phys. Rev. Lett. 104, 090601 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Esposito, M., Harbola, U., Mukamel, S.: Entropy fluctuation theorems in driven open systems: application to electron counting statistics. Phys. Rev. E. 76, 031132 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Fathi, A.: Weak KAM theorem in Lagrangian dynamics, 7th edn. http://www.math.ens.fr/~baladi/fathidea (2005)

  14. Feinberg, M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187–194 (1972)

    Article  MathSciNet  Google Scholar 

  15. Feinberg, M.: Some recent results in chemical reaction network theory. In: Aris, R., Aronson, D.G., Swinney, H.L. (eds.) Patterns and Dynamics in Reactive Media, pp. 43–70. Springer, New York (1991)

    Chapter  Google Scholar 

  16. Feng, J., Kurtz, T.G.: Large Deviation for Stochastic Processes. Math. Surveys and Mono- graphs 131. American Mathematically Society, Providence (2006)

    Book  Google Scholar 

  17. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Spinger, New York (1998)

    Book  MATH  Google Scholar 

  18. Galstyan, V., Saakian, D.B.: Dynamics of the chemical master equation, a strip of chains of equations in d-dimensional space. Phys. Rev. E. 86, 011125 (2012)

    Article  ADS  Google Scholar 

  19. Ge, H., Qian, H.: The physical origins of entropy production, free energy dissipation and their mathematical representations. Phys. Rev. E 81, 051133 (2010)

    Article  ADS  Google Scholar 

  20. Ge, H., Qian, H.: Landscapes of non-gradient dynamics without detailed balance: stable limit cycles and multiple attractors. Chaos 22, 023140 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Ge, H., Qian, H.: Heat dissipation and nonequilibrium thermodynamics of quasi-steady states and open driven steady state. Phys. Rev. E. 87, 062125 (2013)

    Article  ADS  Google Scholar 

  22. Ge, H., Qian, H.: Nonequilibrium thermodynamic formalism of nonlinear chemical reaction systems: I. Waage-Guldbergs law of mass action. arXiv:1601.03158 (2015)

  23. Ge, H., Qian, M., Qian, H.: Stochastic theory of nonequilibrium steady states (Part II): applications in chemical biophysics. Phys. Rep. 510, 87–118 (2012)

    Article  ADS  Google Scholar 

  24. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  ADS  Google Scholar 

  25. Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  26. Hill, T.L.: Some general principles in free energy transduction. Proc. Natl. Acad. Sci. USA 80, 2922–2925 (1983)

    Article  ADS  Google Scholar 

  27. Horn, F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49, 172–186 (1972)

    Article  MathSciNet  Google Scholar 

  28. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)

    Article  MathSciNet  Google Scholar 

  29. Hu, G.: Lyapounov function and stationary probability distributions. Zeit. Phys. B 65, 103–106 (1986)

    Article  MathSciNet  Google Scholar 

  30. Ishii, H., Mitake, H.: Representation formulas for solutions of Hamilton–Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J. 56(5), 2159–2184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jiang, D.Q., Qian, M., Qian, M.P.: Mathematical Theory of Nonequilibrium Steady States. Lecture Notes in Mathematics. Springer, Berlin (2004)

    Book  Google Scholar 

  32. Van Kampen, N.G.: A power series expansion of the master equations. Can. J. Phys. 39, 551–567 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Kirkwood, J.G.: Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300–313 (1935)

    Article  ADS  MATH  Google Scholar 

  34. Keizer, J.: Statistical thermodynamics of nonequilibrium processes. Springer, New York (1987)

    Book  Google Scholar 

  35. Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoc. Proc. Appl. 6, 223–240 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  36. Landau, L.D., Lifshitz, E.M.: Mechanics (Course of Theoretical Physics), Vol 1, 3rd edn. Butterworth-Heinemann, Oxford (1976)

    Google Scholar 

  37. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lee, L.W., Yin, L., Zhu, X.M., Ao, P.: Generic enzymatic rate equation under living conditions. J. Biol. Sys. 15, 495–514 (2007)

    Article  MATH  Google Scholar 

  39. Leontovich, M.A.: Basic equations of kinetic gas theory from the viewpoint of the theory of random processes. J. Exp. Theoret. Phys. 5, 211–231 (1935)

    Google Scholar 

  40. Lewis, G.N.: A new principle of equilibrium. Proc. Natl. Acad. Sci. USA 11, 179–183 (1925)

    Article  ADS  Google Scholar 

  41. Moerner, W.E.: Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel lecture). Angew. Chem. Int. Ed. 54, 8067–8093 (2015)

    Article  Google Scholar 

  42. Othmer, H.G.: Nonuniqueness of equilibria in closed reaction systems. Chem. Eng. Sci. 31, 993–1003 (1976)

    Article  Google Scholar 

  43. Polettini, M., Esposito, M.: Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. J. Chem. Phys. 141, 024117 (2014)

    Article  ADS  Google Scholar 

  44. Polettini, M., Wachtel, A., and Esposito, M.: Dissipation in noisy chemical networks: the role of deficiency. arXiv:1507.00058 (2015)

  45. Qian, H.: The zeroth law of thermodynamics and volume-preserving conservative system in equilibrium with stochastic damping. Phys. Lett. A 378, 609–616 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Qian, H., Beard, D.A.: Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys. Chem. 114, 213–220 (2005)

    Article  Google Scholar 

  47. Qian, H., Beard, D.A., Liang, S.-D.: Stoichiometric network theory for nonequilibrium biochemical systems. Eur. J. Biochem. 270, 415–421 (2003)

    Article  Google Scholar 

  48. Qian, H., Kjelstrup, S., Kolomeisky, A.B., Bedeaux, D.: Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces. J. Phys. 28, 1530000000000004 (2016)

    Google Scholar 

  49. Santillán, M., Qian, H.: Irreversible thermodynamics in multiscale stochastic dynamical systems. Phys. Rev. E 83, 041130 (2011)

    Article  ADS  Google Scholar 

  50. Schuster, S., Schuster, R.: A generalization of Wegscheider’s condition: implications for properties of steady states and for quasi-steady-state approximation. J. Math. Chem. 3, 25–42 (1989)

    Article  MathSciNet  Google Scholar 

  51. Shapiro, N.Z., Shapley, L.S.: Mass action laws and the Gibbs free energy function. J. SIAM 13, 353–375 (1965)

    MathSciNet  Google Scholar 

  52. Shear, D.B.: An analog of the Boltzmann H-theorem (a Lyapunov function) for systems of coupled chemical reactions. J. Theor. Biol. 16, 212–228 (1967)

    Article  Google Scholar 

  53. Shear, D.B.: Stability and uniqueness of the equilibrium point in chemical reaction systems. J. Chem. Phys. 48, 4144–4147 (1968)

    Article  ADS  Google Scholar 

  54. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis. Chapman & Hall, London (1995)

    MATH  Google Scholar 

  55. Vellela, M., Qian, H.: Stochastic dynamics and nonequilibrium thermodynamics of a bistable chemical system: The Schlögl model revisited. J. Roy. Soc. Interf. 6, 925–940 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Xiao Jin, Tiejun Li for comments and helpful discussions. H. Ge is supported by NSFC (Nos. 21373021 and 11622101), and the 863 program (No. 2015AA020406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Qian, H. Mathematical Formalism of Nonequilibrium Thermodynamics for Nonlinear Chemical Reaction Systems with General Rate Law. J Stat Phys 166, 190–209 (2017). https://doi.org/10.1007/s10955-016-1678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1678-6

Keywords

Navigation