Skip to main content

Advertisement

Log in

Entropy Inequalities for Stable Densities and Strengthened Central Limit Theorems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the central limit theorem for stable laws in the case of the standardized sum of independent and identically distributed random variables with regular probability density function. By showing decay of different entropy functionals along the sequence we prove convergence with explicit rate in various norms to a Lévy centered density of parameter \(\lambda >1\) . This introduces a new information-theoretic approach to the central limit theorem for stable laws, in which the main argument is shown to be the relative fractional Fisher information, recently introduced in Toscani (Ricerche Mat 65(1):71–91, 2016). In particular, it is proven that, with respect to the relative fractional Fisher information, the Lévy density satisfies an analogous of the logarithmic Sobolev inequality, which allows to pass from the monotonicity and decay to zero of the relative fractional Fisher information in the standardized sum to the decay to zero in relative entropy with an explicit decay rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26, 4–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artstein, S., Ball, K.M., Barthe, F., Naor, A.: Solution of Shannon’s problem on the monotonicity of entropy. J. Am. Math. Soc. 17, 975–982 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artstein, S., Ball, K.M., Barthe, F., Naor, A.: On the rate of convergence in the entropic central limit theorem. Probab. Theory Relat. Fields 129, 381–390 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barron, A.R.: Entropy and the central limit theorem. Ann. Probab. 14, 336–342 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bassetti, F., Ladelli, L., Matthes, D.: Central limit theorem for a class of one-dimensional kinetic equations. Probab. Theory Relat. Fields 150, 77–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bassetti, F., Ladelli, L., Regazzini, E.: Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. J. Stat. Phys. 133, 683–710 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  ADS  Google Scholar 

  8. Blachman, N.M.: The convolution inequality for entropy powers. IEEE Trans. Inform. Theory 2, 267–271 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobkov, S.G., Chistyakov, G.P., Götze, F.: Bounds for characteristic functions in terms of quantiles and entropy. Electron. Commun. Probab. 17, 1–9 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bobkov, S.G., Chistyakov, G.P., Götze, F.: Convergence to stable laws in relative entropy. J. Theor. Probab. 26, 803–818 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bobkov, S.G., Chistyakov, G.P., Götze, F.: Fisher information and the central limit theorem. Probab. Theory Relat. Fields 159, 1–59 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bobkov, S.G., Chistyakov, G.P., Götze, F.: Fisher information and convergence to stable laws. Bernoulli 20(3), 1620–1646 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L., Vazquez, J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carlen, E.A., Soffer, A.: Entropy production by block variable summation and central limit theorems. Commun. Math. Phys. 140, 339–371 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Carrillo, J.A., Huang, Y., Santos, M.C., Vázquez, J.L.: Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure. J. Differ. Equ. 258, 736–763 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Carrillo, J.A., Toscani, G.: Exponential convergence toward equilibrium for homogeneous Fokker–Planck-type equations. Math. Methods Appl. Sci. 21, 1269–1286 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chaves, A.S.: A fractional diffusion equation to describe Lévy flights. Phys. Lett. A 239, 13–16 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cox, D.R., Hinkley, D.V.: Theoretical Statistics. Chapman & Hall, London (1974)

    Book  MATH  Google Scholar 

  19. Csiszar, I.: Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  20. Erbar, M.: Gradient flows of the entropy for jump processes. Ann. Inst. H. Poincare Probab. Stat. 50(3), 920–945 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1971)

    MATH  Google Scholar 

  22. Furioli, G., Pulvirenti, A., Terraneo, E., Toscani, G.: On Rosenau-type approximations to fractional diffusion equations. Commun. Math. Sci. 13(5), 1163–1191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge (1954)

    MATH  Google Scholar 

  24. Guo, D.: Relative entropy and score function: new information-estimation relationships through arbitrary additive perturbation. In: Proceedings of IEEE International Symposium on Information Theory 2009, Seoul, June 2009, pp. 814–818

  25. Ibragimov, I.A., Linnik, Yu.V.: Independent and stationary sequences of random variables, With a supplementary chapter by Ibragimov I.A. and Petrov V.V., Translation from the Russian edited by Kingman J.F.C. Wolters-Noordhoff Publishing, Groningen (pp. 1971)

  26. Johnson, O.: Entropy inequalities and the central limit theorem. Stoch. Process. Appl. 88, 291–304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Johnson, O., Barron, A.R.: Fisher information inequalities and the central limit theorem. Probab. Theory Relat. Fields 129, 391–409 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Klafter, J., Zumofen, G., Shlesinger, M.F.: Long-tailed distributions and non-Brownian transport in complex systems. In: Mallamace, F., Stanley, H.E. (eds.) The Physics of Complex Systems, pp. 85–94. IOS Press, Amsterdam (1997)

    Google Scholar 

  29. Kotz, S., Ostrovskii, I.V.: A mixture representation of the Linnik distribution. Stat. Probab. Lett. 26, 61–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kullback, S.: A lower bound for discrimination information in terms of variation. IEEE Trans. Inf. Theory 4, 126–127 (1967)

    Article  Google Scholar 

  31. Laha, R.G., Rohatgi, V.K.: Wiley Series in Probability and Mathematical Statistics. Probability Theory. Wiley, New York (1979)

    Google Scholar 

  32. Lieb, E.H.: Proof of an entropy conjecture of Wehrl. Commun. Math. Phys. 62, 35–41 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lieb, E.H.: Sharp constants in the hardy-Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Linnik, YuV: Linear forms and statistical criteria. II. Ukrainskii Mat. Zhournal 5, 247–290 (1953)

    MathSciNet  MATH  Google Scholar 

  35. Linnik, YuV: An information-theoretic proof of the central limit theorem with the Lindeberg condition. Theory Probab. Appl. 4, 288–299 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  36. Linnik, YuV: Linear forms and statistical criteria I, II. Selected Translations in Mathematical Statistics and Probability, vol. 3, pp. 1–90. American Mathematical Society, Providence, RI (1962)

    Google Scholar 

  37. Lions, P.L., Toscani, G.: A strenghened central limit theorem for smooth densities. J. Funct. Anal. 129, 148–167 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Madiman, M., Barron, A.R.: The monotonicity of information in the central limit theorem and entropy power. In: Proceeding of IEEE International Symposium on Information Theory Inequalities, Seattle (2006)

  39. Madiman, M., Barron, A.R.: Generalized entropy power inequalities and monotonicity properties of information. IEEE Trans. Inf. Theory 53(4), 2317–2329 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Molz III, F.J., Fix III, G.J., Lu, S.: A physical interpretation for the fractional derivative in Levy diffusion. Appl. Math. Lett. 15, 907–911 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ott, A., Bouchaud, J.P., Langevin, D., Urbach, W.: Anomalous diffusion in living polymers: a genuine Lévy flight? Phys. Rev. Lett. 65, 2201–2204 (1990)

    Article  ADS  Google Scholar 

  42. Riesz, M.: L’intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81, 1–223 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shannon, C.E.: A mathematical theory of communication, Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

  44. Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  45. Shlesinger, M.F., Zaslavsky, G.M., Klafter, J.: Strange kinetics. Nature 363, 31–37 (1993)

    Article  ADS  Google Scholar 

  46. Stam, A.J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Contr. 2, 101–112 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  48. Toscani, G.: Sur l’inegalité logarithmique de Sobolev. C.R. Acad. Sci. Paris 324, 689–694 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Toscani, G.: Entropy dissipation and the rate of convergence to equilibrium for the Fokker–Planck equation. Q. J. Mech. Appl. Math. LVII, 521–541 (1999)

    MATH  Google Scholar 

  50. Toscani, G.: The fractional Fisher information and the central limit theorem for stable laws. Ricerche Mat. 65(1), 71–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tulino, A.M., Verdú, S.: Monotonic decrease of the non-Gaussianness of the sum of independent random variables: a simple proof. IEEE Trans. Inform. Theory 52, 4295–4297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vázquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 16, 769–803 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7, 857–885 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yamazato, M.: Unimodality of infinitely divisible stable distributions of class L. Ann. Probab. 6, 523–531 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been written within the activities of the National Group of Mathematical Physics of INDAM (National Institute of High Mathematics). The support of the project “Optimal mass transportation, geometrical and functional inequalities with applications”, financed by the Minister of University and Research, is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Toscani.

Appendix

Appendix

In this short appendix we will collect the notations concerning fractional derivatives, with some applications to the Lévy stable laws. Also, we list the various functional spaces used in the paper. Last, we recall some properties of Linnik distribution, that represents the main example of probability density to which the results of the present paper can be applied.

1.1 Appendix 1: Fractional Derivatives

For \(0<\nu < 1\) we let \(R_\nu \) be the one-dimensional normalized Riesz potential operator defined for locally integrable functions by [42, 47]

$$\begin{aligned} R_\nu (f)(x) = S(\nu ) \int _{\mathbb {R}}\frac{f(y)\, dy}{|x-y|^{1-\nu }}. \end{aligned}$$

The constant \(S(\nu )\) is chosen to have

$$\begin{aligned} \widehat{R_\nu (f)}(\xi ) = |\xi |^\nu \widehat{f}(\xi ). \end{aligned}$$
(57)

Since for \(0<\nu < 1\) it holds [33]

$$\begin{aligned} \mathcal F |x|^{\nu -1} = |\xi |^{-\nu } \pi ^{1/2} \Gamma \left( \frac{1-\nu }{2} \right) \Gamma \left( \frac{\nu }{2} \right) , \end{aligned}$$
(58)

where, as usual \(\Gamma (\cdot )\) denotes the Gamma function, the value of \(S(\nu )\) is given by

$$\begin{aligned} S(\nu ) = \left[ \pi ^{1/2} \Gamma \left( \frac{1-\nu }{2} \right) \Gamma \left( \frac{\nu }{2} \right) \right] ^{-1}. \end{aligned}$$

Note that \(S(\nu ) = S(1-\nu )\).

We then define the fractional derivative of order \(\nu \) of a real function f as (\(0<\nu < 1\))

$$\begin{aligned} \frac{d^\nu f(x)}{dx^\nu } = {\mathcal {D}}_\nu f(x) = \frac{d}{dx}R_{1-\nu }(f)(x). \end{aligned}$$
(59)

Thanks to (57), in Fourier variables

$$\begin{aligned} \widehat{{ {\mathcal {D}}}_\nu f}(\xi ) = i \frac{\xi }{|\xi |} |\xi |^\nu \widehat{f}(\xi ). \end{aligned}$$
(60)

It is immediate to verify that, for \(0<\nu <1\), Lévy centered stable laws \(\omega (x)\) of parameter \(\lambda = 1+\nu \) satisfy

$$\begin{aligned} \frac{ {\mathcal {D}}_\nu \, \omega (x)}{\omega (x)} = -\frac{x}{1+\nu }. \end{aligned}$$
(61)

Indeed, identity (61) is verified if and only if, on the set \(\{f>0\}\)

$$\begin{aligned} {\mathcal {D}}_\nu f(x) = -\frac{xf(x)}{1+\nu }. \end{aligned}$$
(62)

Passing to Fourier transform, this identity yields

$$\begin{aligned} i \xi |\xi |^{\nu -1} \widehat{f}(\xi ) = -i \frac{1}{1+\nu }\frac{\partial \widehat{f}(\xi )}{\partial \xi }, \end{aligned}$$

and from this follows

$$\begin{aligned} \widehat{f}(\xi ) = \widehat{f}(0) \exp \left\{ -|\xi |^{\nu +1}\right\} . \end{aligned}$$
(63)

Finally, imposing that f(x) is a probability density function (i.e. by fixing \(\widehat{f}(\xi = 0) =1\)), we obtain that the Lévy stable law of order \(1 + \nu \) is the unique probability density solving (61)

1.2 Appendix 2: Functional Framework

We list below the various functional spaces used in the paper. For \(p \in [1, +\infty )\) and \(q \in [1, +\infty )\), we denote by \(L_q^p\) the weighted Lebesgue spaces

$$\begin{aligned} L^p_q := \left\{ f : {\mathbb {R}}\rightarrow {\mathbb {R}}\text { measurable; }\Vert f\Vert _{L^p_q}^p := \int _{\mathbb {R}}|f(x)|^p \, (1+ x^2)^{q/2} \, dx < \infty \right\} . \end{aligned}$$

In particular, the usual Lebesgue spaces are given by

$$\begin{aligned} L^p := L^p_0.\end{aligned}$$

Moreover, for \(f \in L^1_q\), we can define for any \(\kappa \le q\) the \(\kappa ^{th}\) order moment of f as the quantity

$$\begin{aligned} m_\kappa (f):= \int _{\mathbb {R}}f(x) \, |x|^{\kappa } dx\, < \, \infty . \end{aligned}$$

For \(k \in \mathbb {N}\), we denote by \(W^{k,p}\) the Sobolev spaces

$$\begin{aligned} W^{k,p} := \left\{ f \in L^k; \Vert f\Vert _{W{k,p}}^p := \sum _{|j| \le k} \int _{{\mathbb {R}}} \left| f^{(j)}(v)\right| ^p \, dx < \infty \right\} . \end{aligned}$$

If \(p=2\) we set \(H^k := W^{k,2}\).

Given a probability density f, we define its Fourier transform \(\mathcal F(f)\) by

$$\begin{aligned} \mathcal F(f)(\xi ) = \widehat{f}(\xi ) := \int _{\mathbb {R}}e^{- i \, \xi \, x} f(x)\, dx, \qquad \forall \xi \in {\mathbb {R}}. \end{aligned}$$

The Sobolev space \(H^k\) can equivalently be defined for any \(k \ge 0\) by the norm

$$\begin{aligned} \Vert f\Vert _{H^{k}} := \left\| \mathcal F\left( f \, \right) \right\| _{L^2_{2k}}. \end{aligned}$$

The homogeneous Sobolev space \(\dot{H}^k\) is then defined by the homogeneous norm

$$\begin{aligned} \Vert f\Vert _{\dot{H}^k}^2 := \int _{\mathbb {R}}|\xi |^{2 k} \left| \widehat{f}(\xi ) \right| ^2 \, d \xi . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toscani, G. Entropy Inequalities for Stable Densities and Strengthened Central Limit Theorems. J Stat Phys 165, 371–389 (2016). https://doi.org/10.1007/s10955-016-1619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1619-4

Keywords

Navigation