Skip to main content
Log in

The Geometric Approach for Constructing Sinai–Ruelle–Bowen Measures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An important class of ‘physically relevant’ measures for dynamical systems with hyperbolic behavior is given by Sinai–Ruelle–Bowen (SRB) measures. We survey various techniques for constructing SRB measures and studying their properties, paying special attention to the geometric ‘push-forward’ approach. After describing this approach in the uniformly hyperbolic setting, we review recent work that extends it to non-uniformly hyperbolic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Our definition of SRB measure includes the requirement that the measure is hyperbolic. In fact, one can extend the notion of SRB measures to those that have some or even all Lyapunov exponents zero (in the latter case we take \(W^u(x)=\{x\}\)). It was proved by Ledrappier and Young [39] that a measure satisfies the entropy formula if and only if it is an SRB measure in this more general sense, but we stress that such an SRB measure may not be physical, i.e., its basin may be of zero Lebesgue measure.

  2. Note that the subspaces \(E^s(x)\) and \(E^u(x)\) for \(x\in \tilde{U}\) need not be invariant under df.

  3. This requires a version of the Besicovitch covering lemma, which is usually formulated for geometrical balls, so one must choose the \(W_i\) in such a way that each \(f^n(W_i)\) is ‘sufficiently close’ to being a ball in \(f^n(W)\).

  4. Although note that the ‘mostly expanding’ condition of Theorem 6.3 is slightly more restrictive than saying that all Lyapunov exponents in \(E^{cu}\) are positive.

  5. We stress that non-uniform hyperbolicity on an invariant set does not require presence of any invariant measure. On the other hand if f preserves a hyperbolic measure then there is an invariant set \(\Lambda \) on which f is non-uniformly hyperbolic.

References

  1. Afraimovich, V., Pesin, Ya.: The dimension of Lorenz type attractors. Sov. Math. Phys. Rev 6, 169–241 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Afraimovich, V., Bykov, V., Shilnikov, L.: On appearance and structure of Lorenz attractor. Dokl. Akad. Nauk USSR 234, 336–339 (1977)

    ADS  Google Scholar 

  3. Alves, J.: SRB measures for non-hyperbolic systems with multidimensional expansion. Ann. Sci. École Norm. Sup. (4) 33, 1–32 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Alves, J., Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140, 351–398 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Alves, J., Dias, C., Luzzatto, S., Pinheiro, V.: SRB measures for partially hyperbolic systems whose central direction is weakly expanding. J. Eur. Math. Soc. (2016, to appear)

  6. Bakhtin, V.: A direct method for constructing an invariant measure on a hyperbolic attractor. Izv. Ross. Akad. Nauk Ser. Mat. 56(5), 934–957 (1992) (English translation in Russian Acad. Sci. Izv. Math. 41(2), 207–227 (1993)

  7. Baladi, V.: The quest for the ultimate anisotropic Banach space. Preprint (2016). arXiv:1607.00654

  8. Barreira, L., Pesin, Ya.: Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  9. Belykh, V.: Qualitative Methods of the Theory of Non-linear Oscillations in Point Systems. Gorki Universiy Press, Gorky (1980)

    MATH  Google Scholar 

  10. Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benedicks, M., Young, L.-S.: Sinai–Bowen–Ruelle measure for certain Hénon maps. Invent. Math. 112, 541–576 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Benedicks, M., Young, L.-S.: Markov extensions and decay of correlations for certain Hénon maps. Astérisque 261, 13–56 (2000)

    MATH  Google Scholar 

  13. Blank, M., Keller, G., Liverani, C.: Ruelle–Perron–Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bunimovich, L., Sinai, Ya.: Stochasticity of the attractor in the Lorenz model. In: Nonlinear Waves (Proc. Winter School, Moscow), pp. 212–226. Nauka, Moscow (1980)

  15. Burns, K., Dolgopyat, D., Pesin, Ya., Pollicott, M.: Stable ergodicity for partially hyperbolic attractors with negative central exponents. J. Mod. Dyn. 2(1), 1–19 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Bonatti, C., Diaz, L.J.: Persistence of transitive diffeomorphisms. Ann. Math. 143, 367–396 (1995)

    Google Scholar 

  17. Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115, 157–193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bonatti, C., Diaz, L.J., Ures, R.: Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms. J. Inst. Math. Jussieu 1(4), 513–541 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonatti, C., Diaz, L., Viana, M.: Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. In: Mathematical Physics, III. Encyclopedia of Mathematical Sciences, 102. Springer, Berlin (2005)

  20. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

  21. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Chernov, N.: Sinai billiards under small external forces. Ann. Inst. H. Poincaré 2, 197–236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chernov, N., Dolgopyat, D.: Brownian Brownian Motion—I. Memoirs AMS 198(927), 193 pp (2009)

  24. Chernov, N., Eyink, G., Lebowitz, J., Sinai, Ya.: Steady-state electrical conduction in the periodic Lorentz gas. Commun. Math. Phys. 154(3), 569–601 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Climenhaga, V., Katok, A.: Measure theory through dynamical eyes. Preprint (2012). arXiv:1208.4550

  26. Climenhaga, V., Pesin, Ya.: Hadamard–Perron theorems and effective hyperbolicity. Exoplanet Transit Database 36(1), 23–63 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Climenhaga, V., Dolgopyat, D., Pesin, Ya.: Non-stationary non-uniform hyperbolicity: SRB measures for dissipative maps. Commun. Math. Phys. 346, 553 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Climenhaga, V., Luzzatto, S., Pesin, Ya.: Young towers for hyperbolic measures for surface diffeomorphisms. Preprint (2016)

  29. Dobrushin, R.: Description of a random field by means of conditional probabilities and conditions for its regularity. Teor. Veroyatnoistei i Primenenia 13, 201–229 (1968) (English translation: Theory Probab. Appl. 13, 197–223)

  30. Dolgopyat, D.: Limit theorems for partially hyperbolic systems. Trans. AMS 356, 1637–1689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dolgopyat, D., Viana, M., Yang, J.: Geometric and measure-theoretical structures of maps with mostly contracting center. Commun. Math. Phys. 341(3), 991–1014 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. ETDS 26(1), 189–217 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Guckenheimer, J., Williams, R.: Structural stability of the Lorenz attractors. Publ. Math. IHES 50, 59–72 (1980)

    Article  MATH  Google Scholar 

  34. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Springer Lecture Notes on Mathematics, vol. 583. Springer, Berlin (1977)

  35. Kaneko, K.: Dominance of Milnor attractors in globally coupled dynamical systems with more than \(7\pm 2\) degrees of freedom. Phys. Rev. E 66, 055201 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  36. Lanford, O., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ledrappier, F.: Propriétés ergodiques des mesures de Sina i. Inst. Hautes Études Sci. Publ. Math. 59, 163–188 (1984)

    Article  MATH  Google Scholar 

  38. Ledrappier, F., Strelcyn, J.-M.: A proof of the estimation from below in Pesin entropy formula. Ergod. Theory Dyn. Syst. 2, 203–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. Ann. Math. 122, 509–574 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Levy, Y.: Ergodic Properties of the Lozi Map. Springer Lecture Notes in Mathematics, vol. 1109, pp. 103–116. Springer, Berlin (1985)

  41. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Misiurewicz, M.: Strange attractors for the Lozi mappings. In: Helleman, R.G. (ed.) Nonlinear Dynamics, pp. 358–398. Academic Press, New York (1980)

    Google Scholar 

  43. Pesin, Ya.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surveys 32(4), 506–515 (1977)

    Article  MATH  Google Scholar 

  44. Pesin, Ya., Sinai, Ya.: Gibbs measures for partially hyperbolic attractors. Ergod. Theory Dyn. Syst. 2(3—-4), 417–438 (1982)

    MathSciNet  MATH  Google Scholar 

  45. Pesin, Ya.: Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Theory Dyn. Syst. 12(1), 123–151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pugh, C., Shub, M.: Stably ergodic dynamical systems and partial hyperbolicity. J. Complexity 13, 125–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rodriguez Hertz, F., Rodriguez Hertz, M.A., Tahzibi, A., Ures, R.: Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Commun. Math. Phys. 306(1), 35–49 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Ruelle, D.: A measure associated with axiom-A attractors. Am. J. Math. 98(3), 619–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rychlik, M.: Invariant measures and the variation principle for Lozi mappings. PhD Dissertation, University of California, Berkeley (1983)

  50. Shub, M., Wilkinson, A.: Pathological foliations and removable zero exponents. Invent. Math. 139(3), 495–508 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Sinai, Ya.: Markov partitions and Y-diffeomorphisms. Funct. Anal. Appl. 2(1), 64–89 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sinai, Ya.: Gibbs measures in ergodic theory. Russ. Math. Surveys 27(4), 21–69 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sr. I Math. 328(12), 1197–1202 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Vásquez, C.: Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. J. Modern Dyn. 3(2), 233–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Viana, M.: Dynamics: a probabilistic and geometric perspective. In: Proceedings of the International Congress of Mathematicians, vol. 1, Berlin (1998)

  56. Young, L.-S.: Bowen–Ruelle–Sinai measures for certain piecewise hyperbolic maps. Trans. AMS 287, 41–48 (1985)

    Article  MATH  Google Scholar 

  57. Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5–6), 733–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Williams, R.: Structure of Lorenz Attractors. Springer Lecture Notes in Mathematics, vol. 675, pp. 94–112. Springer, Berlin (1977)

Download references

Acknowledgments

V.C. was partially supported by NSF Grant DMS-1362838. Ya.P. was partially supported by NSF Grant DMS-1400027. V.C. and Ya.P. would like to thank Erwin Schrödinger Institute and ICERM where the part of the work was done for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Pesin.

Additional information

It is our great pleasure to have this survey included in this special issue dedicated to the 80th birthday of the great dynamicists D. Ruelle and Y. Sinai. We take this opportunity to acknowledge the tremendous impact that their work has had and continues to have in this field of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Climenhaga, V., Luzzatto, S. & Pesin, Y. The Geometric Approach for Constructing Sinai–Ruelle–Bowen Measures. J Stat Phys 166, 467–493 (2017). https://doi.org/10.1007/s10955-016-1608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1608-7

Keywords

Navigation