Skip to main content
Log in

A Statistical Test of Walrasian Equilibrium by Means of Complex Networks Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We represent an exchange economy in terms of statistical ensembles for complex networks by introducing the concept of market configuration. This is defined as a sequence of nonnegative discrete random variables \(\{w_{ij}\}\) describing the flow of a given commodity from agent i to agent j. This sequence can be arranged in a nonnegative matrix W which we can regard as the representation of a weighted and directed network or digraph G. Our main result consists in showing that general equilibrium theory imposes highly restrictive conditions upon market configurations, which are in most cases not fulfilled by real markets. An explicit example with reference to the e-MID interbank credit market is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Recent reviews are [17] and [18].

  2. Arrow–Debreu and Radner equilibria extend WE by introducing the notion of contingent commodities, i.e. of commodities whose delivery is conditional on a realized state of the world. The extension of our framework to these equilibria is obtained by associating an independent network ensemble to each state s.

  3. For simplicity we omit market indices and refer in the following to the single commodity case. The extension to multiple markets is straightforward. In fact, we can treat multiple markets at economic equilibrium as a set of statistically independent networks [25].

  4. We observe that Park and Newman don’t derive explicitly the grand canonical partition function, although they use it implicitly to solve their model. Even if they don’t introduce the chemical potential, their results are correct since, as underlined in [22], the latter can be always absorbed in the energy terms \(\epsilon _{ij}\).

  5. In the literature, the concept of graph temperature has been introduced for the first time in [28] within a grand canonical ensemble. Moreover, in [29] the temperature of a complex network is studied in terms of the clustering properties of the graph.

  6. In this comparison we set \(x_{min} = 1\) in the maximum likelihood estimation of the Pareto distribution since we wish to obtain a fitted distribution for all data and not only for values the right tail.

References

  1. Samuelson, P.: Economics, 8th edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  2. Smith, E., Foley, D.K.: Classical thermodynamics and economic general equilibrium theory. J. Econ. Dyn. Control 32, 7–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Reguera, D., Reiss, H., Rawlings, P.K.: Entropic basis of the Pareto law. Physica A 343, 643–652 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yakovenko, V.M.: Statistical mechanics approach to the probability distribution of money. In: Ganssmann, H. (ed.) New Approaches to Monetary Theory: Interdisciplinary Perspectives, pp. 104–123 (2011)

  5. Banerjee, A., Yakovenko, V.M.: Universal patterns of inequality. New J. Phys. 12, 075032 (2010)

    Article  ADS  Google Scholar 

  6. Yakovenko, V.M., Rosser, J.B.: Colloquium: statistical mechanics of money, wealth, and income. Rev. Mod. Phys. 81, 1703–1725 (2009)

    Article  ADS  Google Scholar 

  7. Saslow, W.M.: An economic analogy to thermodynamics. Am. J. Phys. 67(12), 1239–1247 (1999)

    Article  ADS  Google Scholar 

  8. McCauley, J.L.: Thermodynamic analogies in economics and finance: instability of markets. Physica A 329, 199–212 (2003)

    Article  ADS  MATH  Google Scholar 

  9. McCauley, J.L.: Response to ?Worrying Trends in Econophysics? Phys. A 371, 601–609 (2006)

    Article  MathSciNet  Google Scholar 

  10. Dragulescu, A.A., Yakovenko, V.M.: Statistical mechanics of money. Eur. Phys. J. B 17, 723–729 (2000)

    Article  ADS  Google Scholar 

  11. Dragulescu, A.A., Yakovenko, V.M.: Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Physica A 299, 213–221 (2001)

    Article  ADS  MATH  Google Scholar 

  12. Dragulescu, A.A., Yakovenko, V.M.: Evidence for the exponential distribution of income in the USA. Eur. Phys. J. B 20, 585–589 (2001)

    Article  ADS  MATH  Google Scholar 

  13. Angle, J.: The surplus theory of social stratification and the size distribution of Personal Wealth. Soc. Forces 65, 293–326 (1986)

    Article  Google Scholar 

  14. Bennati, E.: Un metodo di simulazione statistica per l’analisi della distribuzione del reddito. Rivista Internazionale di Scienze Economiche e Commerciali 35, 735–756 (1988)

    Google Scholar 

  15. Garibaldi, U., Scalas, E.: Finitary Probabilistic Methods in Econophysics. Cambridge University Press, Cambridge, UK (2010)

    Book  MATH  Google Scholar 

  16. Viaggiu, S., Lionetto, A., Bargigli, L., Longo, M.: Statistical ensembles for money and debt. Physica A 391(21), 4839–4849 (2012)

    Article  ADS  Google Scholar 

  17. Upper, C.: Simulation results to assess the danger of contagion in interbank markets. J. Financ. Stab. 7, 111–125 (2011)

    Article  Google Scholar 

  18. Chinazzi, M., Fagiolo., G.: Systemic risk, contagion, and financial networks: A survey. LEM Papers Series 2013/08, Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies, Pisa, Italy (2013)

  19. Mastromatteo, I., Zarinelli, E., Marsili, M.: Reconstruction of financial network for robust estimation of systemic risk. J. Stat. Mech. 2012, P03011 (2012)

    Article  Google Scholar 

  20. Fagiolo, G., Squartini, T., Garlaschelli, D.: Null models of economic networks: the case of the world trade web. J. Econ. Interact. Coord. 8(1), 75–107 (2013)

    Article  Google Scholar 

  21. Park, J., Newman, M.E.J.: The origin of degree correlations in the Internet and other networks. Phys. Rev. E 68, 026112 (2003)

    Article  ADS  Google Scholar 

  22. Garlaschelli, D., Loffredo, M.I.: Maximum likelihood: extracting unbiased information from complex networks. Phys. Rev. E 73, 015101(R) (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  24. Serrano, M.A., Boguñá, M.: Weighted Configuration Model, AIP Conference Proceedings, vol. 776 (1), pp. 101–107 (2005)

  25. Bianconi, G.: Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013)

    Article  ADS  Google Scholar 

  26. Foley, D.K.: A statistical equilibrium theory of markets. J. Econ. Theory 62(2), 321–345 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

  28. Garlaschelli D., Ahnert S.E., Fink T.M.A., Caldarelli G.: Temperature in complex network, arXiv:cond-mat/0606805

  29. Dmitri, K., Fragkiskos, P., Vahdat, A., Boguná, M.: Curvature and temperature of complex networks. Phys. Rev. E 80, 035101(R) (2009)

    Google Scholar 

  30. Iori, G., Mantegna, R.N., Marotta, L., Micciché, S., Porter, S., Tumminello, M.: Networked relationships in the e-MID interbank market: a trading model with memory. J. Econ. Dyn. Control 50, 98–116 (2015)

    Article  MathSciNet  Google Scholar 

  31. Hatzopoulosa, V., Iori, G., Mantegna, R.N., Miccichè, S., Tumminello, M.: Quantifying preferential trading in the e-MID interbank market. Quant. Financ. 15(4), 693–710 (2015)

    Article  MathSciNet  Google Scholar 

  32. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Samuelson, P.: Structure of a minimum equilibrium system. In: Stiglitz, J.E. (ed.) The Collected Scientific Papers of Paul A, pp. 651–686. Samuelson, MIT Press, Cambridge, MA (1966)

    Google Scholar 

  34. Bargigli, L.: Statistical ensembles for economic networks. J. Stat. Phys. 155(4), 810–825 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Musmeci, N., Battiston, S., Caldarelli, G., Puliga, M., Gabrielli, A.: Bootstrapping topology and systemic risk of complex network using the fitness model. J. Stat. Phys. 151(3–4), 720–734 (2013)

  36. Squartini, T., Van Lelyveld, I., Garlaschelli, D.: Early-warning signals of topological collapse in interbank networks. Sci. Rep. 3, 3357 (2013)

    ADS  Google Scholar 

  37. Bargigli, L., Gallegati, M.: Finding communities in credit networks. Economics 7, 2013–2017 (2013)

    Google Scholar 

  38. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  39. Bargigli, L., Gallegati, M.: Random digraphs with given expected degree sequences: a model for economic networks. J. Econ. Behav. Organ. 78(3), 396–411 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We are deeply thankful to Giulia Iori for providing us with the e-MID data. We thank the editor and one anonymous reviewer for their constructive comments, which helped us to improve the manuscript. All the usual disclaimers apply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Bargigli.

Appendix

Appendix

In this appendix we show how to compute the grandcanonical partition function for the network equivalents of the three ideal gas systems. Let’s start by computing \(\mathcal {Q}\) in the case of a directed Fermionic (i.e. binary) network. Since \(L=\sum _{i\ne j}{a}_{ij}\), the grand partition function reads (recall \(\beta = \frac{1}{T}\)):

$$\begin{aligned} \mathcal {Q}(z,V,T)&= \sum _{L = 0}^{n(n-1)} z^L Z_G(L,V,T) = \sum _{\{{a}_{ij}\}} e^{\beta (\mu L-H)} \end{aligned}$$
(42)
$$\begin{aligned}&= \sum _{\{{a}_{ij}\}} e^{\sum _{i\ne j}\beta (\mu - \epsilon _{ij}){a}_{ij}} \end{aligned}$$
(43)
$$\begin{aligned}&= \prod _{i \ne j} \left[ 1 + e^{\beta (\mu - \epsilon _{ij})}\right] . \end{aligned}$$
(44)

The expected occupation numbers \(\langle {a}_{ij} \rangle \) are obtained in the usual way

$$\begin{aligned} \langle {a}_{ij} \rangle&= - \frac{1}{\beta } \dfrac{\partial }{\partial \epsilon _{ij}} \log \mathcal {Q}\end{aligned}$$
(45)
$$\begin{aligned}&= \dfrac{e^{\beta (\mu - \epsilon _{ij})}}{1 + e^{\beta (\mu - \epsilon _{ij})}}, \end{aligned}$$
(46)

which coincides with the results of Park & Newman for \(T = 1\). In the Bosonic (weighted) case, instead of (44) we have

$$\begin{aligned} \mathcal {Q}(z,V,T)= \prod _{i \ne j} \left[ \frac{1}{1 - e^{\beta (\mu - \epsilon _{ij})}} \right] . \end{aligned}$$
(47)

The expression (47) gives

$$\begin{aligned} \langle {w}_{ij} \rangle = \frac{e^{\beta (\mu - \epsilon _{ij})}}{1 - e^{\beta (\mu - \epsilon _{ij})}}, \end{aligned}$$
(48)

that is the Bose-Einstein distribution for networks. Finally for a Boltzmann (weighted) network, taking into account that in this case \(W(G) = \prod _{i \ne j} w_{ij}!\), we have [34]:

$$\begin{aligned} \mathcal {Q}(z,V,T)= \prod _{i \ne j} \exp \left[ e^{\beta (\mu - \epsilon _{ij})}\right] . \end{aligned}$$
(49)

and

$$\begin{aligned} \langle {w}_{ij} \rangle = e^{\beta (\mu - \epsilon _{ij})} \end{aligned}$$
(50)

We remark that the network analogue of the Boltzmann gas, which implies that the \({w}_{ij}\) are Poisson variables, is generally overlooked in the literature or introduced with ad hoc assumptions [38]. It’s easy to see that, with the constraints (20)–(21), in this case we arrive at the following explicit ME solution [39]:

$$\begin{aligned} \left\langle w_{ij} \right\rangle = \frac{\omega _ix_j}{L} \qquad \qquad i,j = 1, \dots , N \end{aligned}$$
(51)

From this solution we can obtain the values for the parameters \(\mu , \lambda _i, \theta _i\):

$$\begin{aligned} \mu&= - T \ln L\\ \lambda _i&= - T \ln x_i \\ \theta _i&= - T \ln \omega _i \end{aligned}$$

Following [28] we can thus connect the probability distribution of these parameters with the probability distribution of the corresponding observables, namely strengths. We also observe that nodes with the same strength values are also characterized by the same parameter values. We can derive the same results for Bosonic and Fermionic systems by observing that

$$\begin{aligned} \frac{\partial \langle a_{ij} \rangle }{\partial \lambda _i}&= \frac{\partial \langle a_{ij} \rangle }{\partial \theta _j} = \beta \, \langle a_{ij} \rangle \, \left[ \langle a_{ij} \rangle - 1 \right] < 0 \end{aligned}$$
(52)
$$\begin{aligned} \frac{\partial \langle w_{ij} \rangle }{\partial \lambda _i}&= \frac{\partial \langle w_{ij} \rangle }{\partial \theta _j} = - \beta \, \langle w_{ij} \rangle \, \left[ \langle w_{ij} \rangle + 1 \right] < 0 \end{aligned}$$
(53)

Then from

$$\begin{aligned} \sum _j \frac{e^{\beta (\mu - \lambda _{i} - \theta _{j})}}{1 \pm e^{\beta (\mu - \lambda _{i} - \theta _{j})}} = \sum _j \frac{e^{\beta (\mu - \lambda _{h} - \theta _{j})} }{1 \pm e^{\beta (\mu - \lambda _{h} - \theta _{j})}} \end{aligned}$$
(54)

we see that if \(\lambda _i \ne \lambda _h\) then the equality (54) cannot be satisfied. Unfortunately, in the Bosonic and Fermionic cases we cannot write down explicitly the functional dependency between strengths and parameters. In the Boltzmann case, instead, we can derive the distribution of the parameters from the distribution of the constraints, at least in some cases. For this reason in the following and in Sect. 4 we always refer to Boltzmann systems. The authors of [28] showed that, if \( \rho (w) = (\gamma - 1) \, w^{-\gamma } \, dw\) then \(\phi = T \ln w\) is exponentially distributed in a Boltzmann system:

$$\begin{aligned} \rho (\phi ) = \frac{\gamma - 1}{T}\,\exp \left( -\phi \frac{\gamma - 1}{T} \right) \, d\phi \end{aligned}$$
(55)

They further observed that we can make \(\rho (\phi )\) independent of T by setting \(T = \gamma - 1\). In this way we obtain that the probability density of \(\phi \) regains some generality, in the sense that, as long as \(\rho (w)\) is in the family of Pareto distributions, \(\rho (\phi )\) is unaffected by variations of T. Then we can envisage a simple procedure to estimate T from \(\rho (w)\), since we can estimate \(\gamma \) from the data. This argument requires that we take a continuous approximation of \(\rho (w)\) in case that the strengths are integers. We can extend it to other densities, like for instance \(\rho (w) = \frac{1}{w \sigma \sqrt{2 \pi }} \, \exp \left( - \frac{(\ln w)^2}{2\sigma ^2}\right) \,dw\). In this case, by operating a substitution of variables we obtain

$$\begin{aligned} \rho (\phi ) = \frac{1}{\sigma \,T\,\sqrt{2\pi }}\,\exp \left( -\frac{\phi ^2}{2\,(\sigma T)^2} \right) \,d\phi \end{aligned}$$
(56)

By setting \(T = \sigma ^{-1}\) we obtain that \(\phi \) is distributed like a standard normal variable. The author of [28] develop their argument in the symmetric case. In the asymmetric / directed case we are confronted with two strength distributions \(\rho (\omega )\) and \(\rho (x)\). Supposing that both come from the same family (Pareto) but with different parameters (respectively \(\gamma _{\omega }\) and \(\gamma _{x}\)), we can set \(\rho (\lambda ) = \exp (\lambda )\) (since \(\lambda \leqslant 0\)) with \(T = \gamma _{x} - 1\). Then we obtain (\(\theta \leqslant 0\))

$$\begin{aligned} \rho (\theta )&= \frac{\gamma _{\omega } - 1}{T} \exp \left( \theta \,\frac{\gamma _{\omega } - 1}{T} \right) \,d\theta \end{aligned}$$
(57)
$$\begin{aligned}&= \frac{\gamma _{\omega } - 1}{\gamma _{x} - 1} \exp \left( \theta \,\frac{\gamma _{\omega } - 1}{\gamma _{x} - 1} \right) \,d\theta \end{aligned}$$
(58)

In the lognormal case, supposing that \(T = \sigma _{x}^{-1}\), we obtain that

$$\begin{aligned} \rho (\lambda )&= \frac{1}{\sqrt{2\pi }}\,\exp \left( \frac{-\lambda ^2}{2\,} \right) \,d\lambda \end{aligned}$$
(59)
$$\begin{aligned} \rho (\theta )&= \frac{1}{\sigma _{\omega }\sigma _{x}^{-1}\sqrt{2\pi }}\,\exp \left( \frac{-\theta ^2}{2\,\sigma _{\omega }\sigma _{x}^{-1}} \right) \,d\theta \end{aligned}$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bargigli, L., Viaggiu, S. & Lionetto, A. A Statistical Test of Walrasian Equilibrium by Means of Complex Networks Theory. J Stat Phys 165, 351–370 (2016). https://doi.org/10.1007/s10955-016-1599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1599-4

Keywords

Navigation