Skip to main content
Log in

Translation Invariant Extensions of Finite Volume Measures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 30 December 2016

Abstract

We investigate the following questions: Given a measure \(\mu _\Lambda \) on configurations on a subset \(\Lambda \) of a lattice \(\mathbb {L}\), where a configuration is an element of \(\Omega ^\Lambda \) for some fixed set \(\Omega \), does there exist a measure \(\mu \) on configurations on all of \(\mathbb {L}\), invariant under some specified symmetry group of \(\mathbb {L}\), such that \(\mu _\Lambda \) is its marginal on configurations on \(\Lambda \)? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which \(\mathbb {L}=\mathbb {Z}^d\) and the symmetries are the translations. For the case in which \(\Lambda \) is an interval in \(\mathbb {Z}\) we give a simple necessary and sufficient condition, local translation invariance (LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which \(\mathbb {L}\) is the Bethe lattice. On \(\mathbb {Z}\) we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When \(\Lambda \subset \mathbb {Z}\) is not an interval, or when \(\Lambda \subset \mathbb {Z}^d\) with \(d>1\), the LTI condition is necessary but not sufficient for extendibility. For \(\mathbb {Z}^d\) with \(d>1\), extendibility is in some sense undecidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ambartzumian, R.V., Sukiasian, H.S.: Inclusion-exclusion and point processes. Acta Appl. Math. 22, 15–31 (1991)

    MathSciNet  Google Scholar 

  2. Ash, R.B.: Real Analysis and Probability. Academic Press, New York (1972)

    Google Scholar 

  3. Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society, vol. 66. The American Mathematical Society, Providence (1966)

    Google Scholar 

  4. Caglioti, E., Kuna, T., Lebowitz, J.L., Speer, E.: Point processes with specified low order correlations. Markov Process. Relat. Fields 12, 257–272 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Carathéodory, C.: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)

    Article  MATH  Google Scholar 

  6. Chazottes, J.-R., Gambaudo, J.-M., Hochman, M., Ugalde, E.: On the finite-dimensional marginals of shift-invariant measures. Ergod. Theory Dyn. Syst. 32, 1485–1500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costin, O., Kuna, T., Lebowitz, J.L., Speer, E.: On the realizability of point processes with specified one and two particle densities. In: Landim, C., Olla, S., Spohn, H. (eds.) Large Scale Stochastic Dynamics, vol. 43. Mathematische Forschungsinstitut Oberwolfach, Oberwolfach (2004)

    Google Scholar 

  8. Crawford, J., Torquato, S., Stillinger, F.H.: Aspects of correlation function realizability. J. Chem. Phys. 119, 7065–7074 (2003)

    Article  ADS  Google Scholar 

  9. de Bruijn, N.G.: A combinatorial problem. K. Ned. Akad. van Wet. A49, 758–764 (1946)

    MathSciNet  MATH  Google Scholar 

  10. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, New York (2002)

    Book  MATH  Google Scholar 

  11. Georgii, H.-O.: Gibbs Measures and Phase Transitions, 2nd edn. DeGruyter, Berlin (2011)

    Book  MATH  Google Scholar 

  12. Golomb, S.W.: Shift Register Sequences, Revised edn. Aegean Park Press, Laguna Hills (1982)

    MATH  Google Scholar 

  13. Good, I.J.: Normal recurring decimals. J. Lond. Math. Soc. 21, 169–172 (1946)

    MathSciNet  MATH  Google Scholar 

  14. Grünbaum, V.: Convex Polytopes, 2nd edn. Springer, New York (2003)

    Book  MATH  Google Scholar 

  15. Halmos, P.R.: Measure Theory. D. van Nostrand, Princeton (1950)

    Book  MATH  Google Scholar 

  16. Kuna, T., Lebowitz, J.L., Speer, E.: Realizability of point processes. J. Stat. Phys. 129, 417–440 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kuna, T., Lebowitz, J.L., Speer, E.: Necessary and sufficient conditions for realizability of point processes. Ann. Appl. Probab. 21, 1253–1281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lachieze-Rey, R., Molchanov, I.: Regularity conditions in the realisability problem with applications to point processes and random closed sets. Ann. Appl. Probab. 25, 116–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Landau, E.: Über die Maximalordnung der Permutationen gegebenen Grades. Arch. Math. Phys. Ser. 3 5, 92–103 (1903)

    MATH  Google Scholar 

  20. Lieb, E.: Some convexity and subadditivity properties of entropy. Bull. Am. Math. Soc. 81, 1–13 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maurer, U.M.: Asymptotically-tight bounds on the number of cycles in generalized de Bruijn graphs. Discret. Appl. Math. 37/38, 421–436 (1992)

  22. Pelizzola, A.: Cluster variation method in statistical physics and probabilistic graphical models. J. Phys. A 38, R309–R339 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. Percus, J.K.: The pair distribution function in classical statistical mechanics. In: Frisch, H.L., Lebowitz, J.L. (eds.) The Equilibrium Theory of Classical Fluids. Benjamin, New York (1964)

    Google Scholar 

  24. Pivato, M.: Building a stationary stochastic process from a finite-dimensional marginal. Can. J. Math. 53, 382–413 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Ruelle, D.: Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics. Addison Wesley, Reading (1978) (second edition Cambridge University Press, 2004)

  27. Schlijper, A.G.: Convergence of the cluster-variation method in the thermodynamic limit. Phys. Rev. B 27, 6841–6848 (1983)

    Article  ADS  Google Scholar 

  28. Schlijper, A.G.: Exact variational methods and cluster-variation approximations. J. Stat. Phys. 35, 285–301 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Schlijper, A.G.: On some variational approximations in two-dimensional classical lattice systems. J. Stat. Phys. 40, 1–27 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. Schlijper, A.G.: Tiling problems and undecidability in the cluster-variation method. J. Stat. Phys. 50, 689–714 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Stillinger, F.H., Torquato, S.: Pair correlation function realizability: lattice model implications. J. Phys. Chem. B 108, 19589 (2004)

    Article  Google Scholar 

  32. Wang, H.: Proving theorems by pattern recognition-II. Bell Syst. Tech. J. 40, 1–41 (1961)

    Article  Google Scholar 

Download references

Acknowledgments

The work J.L.L. was supported in part by NSF Grant DMR 1104500 and AFOSR Grant FA9550-16-1-0037. We thank A. C. D. van Enter and M. Hochman for bringing to our attention previous work on this problem, M. Hochman, M. Saks, S. Thomas, and A. C. D. van Enter for helpful discussions, and D. Avis for making the computer program lrs available to the public and for helpful advice on its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Speer.

Additional information

Dedicated to David Ruelle and Yasha Sinai on the occasion of their eightieth birthdays.

An erratum to this article is available at http://dx.doi.org/10.1007/s10955-016-1711-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, S., Kuna, T., Lebowitz, J.L. et al. Translation Invariant Extensions of Finite Volume Measures. J Stat Phys 166, 765–782 (2017). https://doi.org/10.1007/s10955-016-1595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1595-8

Keywords

Navigation