Skip to main content
Log in

Error Analysis of Modified Langevin Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Langevin dynamics associated with a modified kinetic energy vanishing for small momenta. This allows us to freeze slow particles, and hence avoid the re-computation of inter-particle forces, which leads to computational gains. On the other hand, the statistical error may increase since there are a priori more correlations in time. The aim of this work is first to prove the ergodicity of the modified Langevin dynamics (which fails to be hypoelliptic), and next to analyze how the asymptotic variance on ergodic averages depends on the parameters of the modified kinetic energy. Numerical results illustrate the approach, both for low-dimensional systems where we resort to a Galerkin approximation of the generator, and for more realistic systems using Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Artemova, S., Redon, S.: Adaptively restrained particle simulations. Phys. Rev. Lett. 109(19), 190201 (2012)

    Article  ADS  Google Scholar 

  2. Bennett, C.H.: Mass tensor molecular dynamics. J. Comput. Phys. 19(3), 267–279 (1975)

    Article  ADS  Google Scholar 

  3. Bhattacharya, R.N.: On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrscheinlichkeit. 60(2), 185–201 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosson, M., Grudinin, S., Redon, S.: Block-adaptive quantum mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry. J. Comput. Chem. 34(6), 492–504 (2013)

    Article  Google Scholar 

  5. Bosson, M., Grudinin, S., Bouju, X., Redon, S.: Interactive physically-based structural modeling of hydrocarbon systems. J. Comput. Phys. 231(6), 2581–2598 (2012). doi:10.1016/j.jcp.2011.12.006

    Article  ADS  MATH  Google Scholar 

  6. Hairer, M., Mattingly, J.C.: Yet another look at Harris’ ergodic theorem for Markov chains. In: Seminar on Stochastic Analysis, Random Fields and Applications VI , vol. 63, pp. 109–117. Springer, Basel (2011)

  7. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Joubaud, R., Pavliotis, G.A., Stoltz, G.: Langevin dynamics with space-time periodic nonequilibrium forcing. J. Stat. Phys. 158(1), 1–36 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kliemann, W.: Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15(2), 690–707 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kopec, M.: Weak backward error analysis for Langevin process. BIT Numer. Math. 55(4), 1057–1103 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Latorre, J.C., Pavliotis, G.A., Kramer, P.R.: Corrections to Einstein’s relation for Brownian motion in a tilted periodic potential. J. Stat. Phys. 150(4), 776–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Leimkuhler, B., Matthews, C., Stoltz, G.: The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36(1), 13–79 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Lelièvre, T.: Two mathematical tools to analyze metastable stochastic processes. In: Numerical Mathematics and Advanced Applications 2011, pp. 791–810. Springer, Berlin (2013)

  14. Lelièvre, T., Stoltz, G.: Partial differential equations and stochasticmethods inmolecular dynamics. Acta. Numerica. (2016) (To appear)

  15. Lelièvre, T., Rousset, M., Stoltz, G.: Free Energy Computations: A Mathematical Perspective. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  16. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Proc. Appl. 101(2), 185–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1091 (1953)

    Article  ADS  Google Scholar 

  18. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv. Appl. Probab. 25, 487–517 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Plechac, P., Rousset, M.: Implicit mass-matrix penalization of Hamiltonian dynamics with application to exact sampling of stiff systems. Multiscale Model. Sim. 8(2), 498–539 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rey-Bellet, L.: Ergodic properties of Markov processes. In: Open Quantum Systems II, vol. 1881, pp. 1–39. Springer, Berlin (2006)

  21. Risken, H.: Fokker-Planck Equation. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  22. Rossi, R., Isorce, M., Morin, S., Flocard, J., Arumugam, K., Crouzy, S., Vivaudou, M., Redon, S.: Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design. Bioinformatics 23(13), 408–417 (2007). doi:10.1093/bioinformatics/btm191

    Article  Google Scholar 

  23. Stoltz, G., Trstanova, Z.: Numerical integration of the Langevin dynamics with general kinetic energies. (in preparation)

  24. Straub, J.E., Borkovec, M., Berne, B.J.: Molecular-dynamics study of an isomerizing diatomic in a Lennard–Jones fluid. J. Chem. Phys. 89(8), 4833–4847 (1988)

    Article  ADS  Google Scholar 

  25. Talay, D.: Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Proc. Rel. Fields 8, 163–198 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Tuckerman, M.E.: Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

Download references

Acknowledgments

Stephane Redon and Zofia Trstanova gratefully acknowledge funding from the European Research Council through the ERC Starting Grant No. 307629. This work was funded by the Agence Nationale de la Recherche, under Grant ANR-14-CE23-0012 (COSMOS). Gabriel Stoltz benefited from the scientific environment of the Laboratoire International Associé between the Centre National de la Recherche Scientifique and the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zofia Trstanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redon, S., Stoltz, G. & Trstanova, Z. Error Analysis of Modified Langevin Dynamics. J Stat Phys 164, 735–771 (2016). https://doi.org/10.1007/s10955-016-1544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1544-6

Keywords

Navigation