Skip to main content
Log in

High Temperature Asymptotics of Orthogonal Mean-Field Spin Glasses

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We evaluate the high temperature limit of the free energy of spin glasses on the hypercube with Hamiltonian \(H_N({\underline{\sigma }}) = {\underline{\sigma }}^T J {\underline{\sigma }}\), where the coupling matrix J is drawn from certain symmetric orthogonally invariant ensembles. Our derivation relates the annealed free energy of these models to a spherical integral, and expresses the limit of the free energy in terms of the limiting spectral measure of the coupling matrix J. As an application, we derive the limiting free energy of the random orthogonal model at high temperatures, which confirms non-rigorous calculations of Marinari et al. (J Phys A 27:7647, 1994). Our methods also apply to other well-known models of disordered systems, including the SK and Gaussian Hopfield models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Condition (1.10) can be written as \(\lim _{N\rightarrow \infty }\mathbb {P}\left( \sum _{i=1}^{N} (d_i - \mathbb {E}(d_i))^2 > c \right) \rightarrow 0\) for any constant \(c>0\), since \(W_2^2(\mu _N(D) ,\mu _N(\mathbb {E}(D))) =\frac{1}{N} \sum _{i=1}^{N} (d_i - \mathbb {E}(d_i))^2\). Our results continue to hold if condition (1.10) is replaced by the following slightly general condition: there exists a sequence of deterministic measure \(\nu _N\) supported on N points in \({\mathbb {R}}\) such that \(\lim _{N\rightarrow \infty }\mathbb {P}\left( W_2 (\mu _N(D), \nu _N) > \frac{c}{\sqrt{N}}\right) \rightarrow 0\). However, condition (1.10) suffices in all our applications where we chose \(\nu _N=\frac{1}{N}\sum _{i=1}^N\delta _{\mathbb {E}(d_i)}\).

References

  1. Aizenman, M., Lebowitz, J.L., Ruelle, D.: Some rigorous results on the Sherrington-Kirkpatrick spin glass model. Commun. Math. Phys. 112(1), 3–20 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Bernasconi, J.: Low autocorrelation binary sequences: statistical mechanics and configuration space analysis. J. Phys. 48, 559 (1987)

    Article  Google Scholar 

  4. Bovier, A., van Enter, A.C.D., Niederhauser, B.: Stochastic symmetry-breaking in a Gaussian Hopfield model. J. Stat. Phys. 95(1–2), 181–213 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bovier, A., Gayrard, V.: An almost sure large deviation principle for the Hopfield model. Ann. Probab. 24(3), 1444–1475 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bovier, A., Gayrard, V.: An almost sure central limit theorem for the Hopfield model. Ann. Probab. Markov Process Related Fields 3(2), 151–173 (1997)

    MATH  MathSciNet  Google Scholar 

  7. Carmona, P., Hu, Y.: Universality in Sherrington-Kirkpatrick’s spin glass model. Annales de l’Institut Henri Poincare (B) 42(2), 215–222 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Chandra, H.: Differential operators on a semisimple Lie algebra. Am. J. Math. 79, 87–120 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chatterjee, S.: A simple invariance theorem, arXiv:math/0508213 (2005)

  10. Cherrier, R., Dean, D.S., Lefèvre, A.: The role of the interaction matrix in mean-field spin glasses. Phys. Rev. E 67, 046112 (2003)

    Article  ADS  Google Scholar 

  11. Collins, B., Śniady, P.: New scaling of Itzykson-Zuber integrals. Annales de l’Institut Henri Poincare (B) 43(2), 139–146 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Dallaporta, S.: Eigenvalue variance bounds for Wigner and covariance random matrices. Random Matrices 1(3), 1250007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dallaporta, S.: Eigenvalue variance bounds for covariance matrices, arXiv:1309.6265 (2013)

  14. Degli Espost, M., Giardiná, C., Graffi, S.: Energy landscape statistics of the random orthogonal model. J. Phys. A 36, 2983–2994 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Applications of Mathematics, vol. 38, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  16. Gamboa, F., Rouault, A.: Canonical moments and random spectral measures. J. Theor. Probab. 23(4), 1015–1038 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gentz, B.: A central limit theorem for the overlap in the Hopfield model. Ann. Probab. 24(4), 1809–1841 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gromov, M.: Isoperimetric inequalities in Riemannian manifolds. In: Milman, V., Schechtman, G. (eds.) Asymptotic Theory of Finite Dimensional Normed Space. Lecture Notes in Mathematics, vol. 1200, p. 128. Springer, Berlin (1986)

    Google Scholar 

  19. Guionnet, A., Maida, M.: Fourier view on the \(R\)-transform and related asymptotics of spherical integrals. J. Funct. Anal. 222, 435–490 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guionnet, A., Zeitouni, O.: Large deviations asymptotics for spherical integrals. J. Funct. Anal. 188(2), 461–515 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  22. Marinari, E., Parisi, G., Ritort, F.: Replica field theory for deterministic models: binary sequences with low autocorrelation. J. Phys. A 27, 7615 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Marinari, E., Parisi, G., Ritort, F.: Replica field theory for deterministic models. II. A non-random spin glass with glassy behavior. J. Phys. A 27, 7647 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Montanari, A.: Statistical mechanics and algorithms on sparse and random graphs, St. Flour School of Probability (2013). http://web.stanford.edu/~montanar/OTHER/STATMECH/stflour.pdf

  25. Panchenko, D.: The Sherrington-Kirkpatrick Model. Springer, New York (2013)

    Book  MATH  Google Scholar 

  26. Simmons, G.F.: Introduction to Topology and Modern Analysis. R.E. Krieger Pub. Co., Malabar (1983)

    MATH  Google Scholar 

  27. Talagrand, M.: Rigorous results for the Hopfield model with many patterns. Probab. Theory Relat. Fields 110(2), 177–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Talagrand, M.: Spin Glasses, A Challenge for Mathematicians. Springer, Berlin (2003)

    MATH  Google Scholar 

  29. Zhao, J.: The Hopfield model with superlinearly many patterns. Stat. Probab. Lett. 83(1), 350–356 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Amir Dembo, Andrea Montanari and Sourav Chatterjee for helpful discussions. S.S. thanks Zhou Fan for help with results about random matrices. S.S. was supported by a William R. and Sara Hart Kimball Stanford Graduate Fellowship. The authors also thank an anonymous referee for carefully reading the manuscript and for providing valuable comments which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaswar B. Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, B.B., Sen, S. High Temperature Asymptotics of Orthogonal Mean-Field Spin Glasses. J Stat Phys 162, 63–80 (2016). https://doi.org/10.1007/s10955-015-1406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1406-7

Keywords

Mathematics Subject Classification

Navigation