Skip to main content
Log in

To Each His Own

Reproductive Strategies and Success of Three Common Planarian Species: Schmidtea mediterranea, Dugesia japonica, and Dugesia tigrina

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A Correction to this article was published on 18 October 2022

This article has been updated

Abstract

Planarians are among the most complex animals with the ability to regenerate complete organisms from small tissue pieces. This ability allows them to reproduce by splitting themselves into a head and a tail piece, making them a rare example of asexual reproduction via transverse fission in multi-cellular organisms. Due to the stochastic nature of long reproductive cycles, which range from days to months, few and primarily qualitative studies have been conducted to understand the reproductive behaviors of asexual planarians. We have executed the largest long-term study on planarian asexual reproduction to date, tracking more than 23,000 reproductive events of three common planarian species found in Europe, North America, and Asia, respectively: Schmidtea mediterranea, Dugesia tigrina, and Dugesia japonica. This unique data collection allowed us to perform a detailed statistical analysis of their reproductive strategies. Since the three species share a similar anatomy and mode of reproduction by transverse division, we were surprised to find that each species had acquired its own distinct strategy for optimizing its reproductive success. We statistically examined each strategy, associated trade-offs, and the potential regulatory mechanisms on the population level. Interestingly, models for cell cycle length regulation in unicellular organisms could be directly applied to describe reproductive cycle lengths of planarians, despite the difference in underlying biological mechanisms. Finally, we examined the ecological implications of each strategy through intra- and inter-species competition experiments and found that D. japonica outcompeted the other two species due to its relatively equal distribution of resources on head and tail pieces, its cannibalistic behaviors and ability to thrive in crowded environments. These results show that this species would pose a serious threat to endogenous planarian populations if accidentally introduced in their habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Abril, J.F., Cebria, F., Rodriguez-Esteban, G., Horn, T., Fraguas, S., Calvo, B., Bartscherer, K., Salo, E.: Smed454 dataset: unraveling the transcriptome of Schmidtea mediterranea. BMC Genom. 11(731), 1–19 (2010)

    Google Scholar 

  2. Armstrong, J.T.: The population dynamics of the planarian Dugesia tigrina. ESA 45, 361–365 (1964)

    Google Scholar 

  3. Baguna, J., Carranza, S., Pala, M., Ribera, C., Giribet, G., Arnedo, M.A., Ribas, M., Riutort, M.: From morphology and karyology to molecules. New methods for taxonomical identification of asexual populations of freshwater planarians. A tribute to Professor Mario Benazzi. Ital. J. Zool. 66, 207–214 (1999)

    Article  Google Scholar 

  4. Benazzi, M., Baguna, J., Ballester, R., Puccinelli, I., Del Papa, R.: Further contribution to the taxonomy of the “Dugesia lugubris-polychroa group” with description of Dugesia mediterranea n. sp. (Tricladida, Paludicola). Boll. Zool. 42, 81–89 (1975)

    Article  Google Scholar 

  5. Best, J., Riegel, V., Abelein, M.: Cephalic mechanism for social control of fission in planarians. J. Neurobiol. 5, 421–442 (1974)

    Article  Google Scholar 

  6. Campos, M., Surovtsev, I.V., Kato, S., Paintdakhi, A., Beltran, B., Ebmeier, S.E., Jacobs-Wagner, C.: A constant size extension drives bacterial cell size homeostatis. Cell 159, 1433–1446 (2014)

    Article  Google Scholar 

  7. Cash, K., McKee, M., Wrona, F.: Short-term and long-term consequences of grouping and group foraging in the free-living flatworm Dugesia tigrina. J. Anim. Ecol. 62, 529–535 (1993)

    Article  Google Scholar 

  8. Cebria, F., Newmark, P.A.: Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development 132, 3691–3703 (2005)

    Article  Google Scholar 

  9. Davison, John: Population Growth in Planaria Dugesia Tigrina. J. Gen. Physiol. 61, 767–785 (1973)

    Article  Google Scholar 

  10. De Vries, E.J., Bagufla, J., Ball, I.R.: Chromosomal polymorphism in planarians (Turbellaria, Tricladida) and the plate tectonics of the western Mediterranean. Genetica 62, 187–191 (1984)

    Article  Google Scholar 

  11. Di Talia, S., Skotheim, J.M., Bean, J.M., Siggia, E.D., Cross, F.R.: The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951 (2007)

    Article  ADS  Google Scholar 

  12. Dunkel, J., Talbot, J., Schötz, E.M.: Memory and obesity affect the population dynamics of asexual freshwater planarians. Phys. Biol. 8(2), 026003 (2011)

    Article  ADS  Google Scholar 

  13. Fantes, P.A.: Control of cell size and cycle time in Schizosaccharomyces pombe. J. Cell Sci. 24, 51–67 (1977)

    Google Scholar 

  14. Gee, H., Pickavance, J.R., Young, J.O.: A comparative study of the population biology of the American immigrant triclad Dugesia tigrina (Girard) in two British lakes. Hydrobiologia 361, 135–143 (1998)

    Article  Google Scholar 

  15. Godfray, H.C.J., Patride, L., Harvey, P.H.: Clutch Size. Annu. Rev. Ecol. 22, 409–429 (1991)

    Article  Google Scholar 

  16. Hirshfield, M.F., Tinkle, D.W.: Natural selection and the evolution of reproductive effort. Proc. Natl. Acad. Sci. USA 72(6), 2227–2231 (1975)

    Article  ADS  Google Scholar 

  17. Iyer-Biswas, S., Wright, C.S., Henry, J.T., Lo, K., Burov, S., Lin, Y., Crooks, G.E., Crosson, S., Dinner, A.R., Scherer, N.F.: Scaling laws governing stochastic growth and division of single bacterial cells. Proc. Natl. Acad. Sci. USA 111(45), 15912–15917 (2014)

    Article  ADS  Google Scholar 

  18. Jun, S., Taheri-Araghi, S.: Cell-size maintenance: universal strategy revealed. Trends Microbiol. 23(1), 4–6 (2014)

    Article  Google Scholar 

  19. Kawakatsu, M.: An experimental study of the life-history of Japanese freshwater planaria, p. vivida (ijima et kaburaki), with special reference to the fragmentation. Bull Kyoto Gakugei Univ. Ser. B 14, 35–39 (1959)

    Google Scholar 

  20. Kenk, R.: Sexual and asexual reproduction in Euplanaria tigrina (Girard). Biol. Bull. 73(2), 280–294 (1937)

    Article  Google Scholar 

  21. Morita, M., Best, J.B.: Effects of photoperiods and melatonin on planarian asexual reproduction. J. Exp. Zool. 231, 273–282 (1984)

    Article  Google Scholar 

  22. Newmark, P.A., Alvarado, A.S.: Not your father’s planarian: a classic model enters the era of functional genomics. Nat. Rev. Genet. 3(3), 210–219 (2002)

    Article  Google Scholar 

  23. Oki, I., Tamura, S., Yamayoshi, T., Aand Kawa-Katsu, M.: Karyological and taxonomic studies of DugesiajaponicaIchikawa et Kawakatsu in the Far East. Hydrobiologia 84, 53–68 (1981)

    Article  Google Scholar 

  24. Pringle, J., Hartwell, L.: The Saccharomyces cerevisiae cell cycle. In: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. Cold Spring Harbor Monograph 11 (1981)

  25. Quinodoz, S., Thomas, M.A., Dunkel, J., Schötz, E.M.: The more the merrier? J. Stat. Phys. 142(6), 1324–1336 (2011)

    Article  ADS  MATH  Google Scholar 

  26. Root, R.B.: An estimate of the intrinsic rate of natural increase in the planarian, Dugesia tigrina. Ecology 41, 369–372 (1960)

    Article  Google Scholar 

  27. Sheiman, I.M., Sedelnikov, Z.V., Shkutin, M.F., Kreshchenko, N.D.: Asexual reproduction of planarians: metric studies. Russian J. Dev. Biol. 37, 102–107 (2006)

    Article  Google Scholar 

  28. Sinervo, B., Doughty, P., Huey, R., Zamudio, K.: Allometric engineering: a causal analysis of natural selection on offspring size. Science 258, 1927–1931 (1992)

    Article  ADS  Google Scholar 

  29. Sinervo, B., Licht, P.: Proximate constraints on the evolution of egg size, number and total clutch mass in lizards. Science 252, 1300–1302 (1991)

    Article  ADS  Google Scholar 

  30. Smith, C.C., Fretwell, S.D.: The optimal balance between size and number of offspring. Am. Nat. 108(962), 499–506 (1974)

    Article  Google Scholar 

  31. Smith, H.G., Kallander, H., Nilsson, J.A.: The trade-off between offspring number and quality in the great tit parus major. J. Anim. Ecol. 58(2), 383–401 (1989)

    Article  Google Scholar 

  32. Stearns, S.: The Evolution of Life Histories. Oxford University Press, London (1992)

    Google Scholar 

  33. Stearns, S.: Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47 (1976)

    Article  Google Scholar 

  34. Sveiczer, A., Novak, B., Mitchison, J.: The size control of fission yeast revisited. J. Cell Sci. 109, 2947–2957 (1996)

    Google Scholar 

  35. Taheri-Araghi, S., Bradde, S., Sauls, J.T., Hill, N.S., Levin, P.A., Paulsson, J., Vergassola, M., Suckjoon, J.: Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015)

    Article  Google Scholar 

  36. Thomas, M.A., Schötz, E.-M.: SAPling: a scan-add-print barcoding database system to label and track asexual organisms. J. Exp. Biol. 214(21), 3518–3523 (2011)

    Article  Google Scholar 

  37. Thomas, M.A., Quinodoz, S., Schötz, E.M.: Size matters!. J. Stat. Phys. 148, 664–676 (2012)

    Article  ADS  MATH  Google Scholar 

  38. Turner, J.J., Ewald, J.C., Skotheim, J.M.: Cell size control in yeast. Curr. Biol. 22, 350–359 (2012)

    Article  Google Scholar 

  39. Wagner, D.E., Wang, I.E., Reddien, P.W.: Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811–816 (2011)

    Article  ADS  Google Scholar 

  40. Yoshizawa, Y., Wakabayashi, K., Shinozawa, T.: Inhibition of planarian regeneration by melatonin. Hydrobiologia 227, 31–40 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Olivier Cochet-Escartin for Supplemental Movie 1 and helpful comments on the manuscript, Danielle Hagstrom for manuscript suggestions, and My Du Dang for help with worm maintenance and imaging. This research was funded by the Burroughs Wellcome Fund CASI Award, and the Alfred P. Sloan Fellowship (to E.-M.S.C.). J.A.C was partially supported by the Ledell Family Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva-Maria S. Collins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (tex 7 KB)

Supplementary material 2 (png 117 KB)

Supplementary material 3 (png 392 KB)

Supplementary material 4 (png 195 KB)

Supplementary material 5 (png 49 KB)

Supplementary material 6 (mp4 14891 KB)

Supplementary material 7 (mp4 9605 KB)

Supplementary material 8 (mp4 11002 KB)

Supplementary material 9 (mp4 7112 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, J.A., Lind, C.H., Truong, M.P. et al. To Each His Own. J Stat Phys 161, 250–272 (2015). https://doi.org/10.1007/s10955-015-1310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1310-1

Keywords

Navigation