Skip to main content
Log in

Advection–Diffusion Equation with Absorbing Boundary

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a spatially homogeneous advection–diffusion equation in which the diffusion tensor and drift velocity are time-independent, but otherwise general. We derive asymptotic expressions, valid at large distances from a steady point source, for the flux onto a completely permeable boundary and onto an absorbing boundary. The absorbing case is treated by making a source of antiparticles at the boundary: this method is more general than the method of images. In both cases there is an exponential decay as the distance from the source increases; we find that the exponent is the same for both boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Falkovich, G., Gawedzki, K., Vergassola, M.: Particles and fields in turbulence. Rev. Mod. Phys. 73, 913–975 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bec, J., Gawedzki, K., Horvai, P.: Multifractal clustering in compressible flows. Phys. Rev. Lett. 92, 224501 (2004)

    Article  ADS  Google Scholar 

  3. Pumir, A., Shraiman, B., Chertkov, M.: Geometry of Lagrangian dispersion in turbulence. Phys. Rev. Lett. 85, 5324–5327 (2000)

    Article  ADS  Google Scholar 

  4. Wilkinson, M., Mehlig, B., Gustavsson, K.: Correlation dimension of inertial particles in random flows. Europhys. Lett. 89, 50002 (2010)

    Article  ADS  Google Scholar 

  5. Wilkinson, M., Mehlig, B., Gustavsson, K., Werner, E.: Clustering of exponentially separating trajectories. Eur. Phys. J. B 85, 18 (2012)

    Article  ADS  Google Scholar 

  6. Wilkinson, M., Grant, J.: Triangular constellations in fractal measures. Europhys. Lett. 107, 50006 (2014)

    Article  ADS  Google Scholar 

  7. Kendall, D.G.: The diffusion of shape. Adv. Appl. Probab. 9, 428–430 (1977)

    Article  Google Scholar 

  8. Pumir, A., Wilkinson, M.: A model for the shapes of advected triangles. J. Stat. Phys. 152, 934–953 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Roberts, O.F.T.: The theoretical scattering of smoke in a turbulent atmosphere. Phil. Trans. R. Soc. Lond. A 104, 640–654 (1924)

    Google Scholar 

  10. Sutton, O.G.: A theory of eddy diffusion in the atmosphere. Proc. R. Soc. Lond. A 135, 143–165 (1932)

    Article  ADS  Google Scholar 

  11. Ermak, D.L.: An analytical model for air pollutant transport and deposition from a point source. Atmos. Environ. 11, 231–237 (1977)

    Article  ADS  Google Scholar 

  12. Stockie, J.M.: The mathematics of atmospheric dispersion modelling. SIAM Rev. 53, 349–372 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Redner, S.: A Guide to First Passage Processes. University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  14. Schuss, Z.: Theory and Applications of Stochastic Processes: An Analytical Approach, Applied Mathematical Sciences. Springer, New York (2010)

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by the NORDITA program Dynamics of Particles in Flows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, J., Wilkinson, M. Advection–Diffusion Equation with Absorbing Boundary. J Stat Phys 160, 622–635 (2015). https://doi.org/10.1007/s10955-015-1257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1257-2

Keywords

Navigation