Skip to main content
Log in

Lifshitz Tails for Continuous Matrix-Valued Anderson Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of Lifshitz tails for a continuous matrix-valued Anderson-type model acting on \(L^2(\mathbb {R}^d)\otimes \mathbb {C}^{D}\), for arbitrary \(d\ge 1\) and \(D\ge 1\). We prove that, under a hypothesis of non-degeneracy of the bottom of the spectrum, the integrated density of states of the model has a Lifshitz behaviour at the bottom of the spectrum. We obtain a Lifshitz exponent equal to \(-d/2\) and this exponent is independent of \(D\). It shows that the behaviour of the integrated density of states at the bottom of the spectrum of a quasi-d-dimensional Anderson model is the same as its behaviour for a d-dimensional Anderson model. For \(d=1\), we prove that the bottom of the spectrum is always non-dege nerate, for any matrix-valued periodic background potential, and thus each quasi-one-dimensional Anderson model has a Lifshitz exponent equal to \(-1/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Binder, I. Goldstein M., Voda M.,On the sum of the non-negative lyapunov exponents for some cocycles related to the Anderson model. arXiv:1408.0538

  2. Boumaza, H.: Hölder continuity of the integrated density of states for matrix-valued Anderson models. Rev. Math. Phys. 20(7), 873–900 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boumaza, H.: Localization for a matrix-valued Anderson model. Math. Phys. Anal. Geom. 12(3), 255–286 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boumaza, H.: Localization for an Anderson-Bernoulli model with generic interaction potential. Tohoku Math. J. 65(1), 57–74 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators With Application to Quantum Mechanics and Global Geometry Texts and Monographs in Physics. Springer Study Edition. Springer, Berlin (1987)

    Google Scholar 

  6. Damanik, D., Stollmann, P.: Multi-scale analysis implies strong dynamical localization. Geom. Funct. Anal. 11(1), 11–29 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dollard, J., Friedman, C.: Product Integration with Applications to Differential Equations, Encyclopedia of Mathematics and its Application. Addison-Wesley, London (1979)

    Google Scholar 

  8. Kirsch W., Random Schrödinger operators. A course. Lecture notes in Phys. 345, Springer, Berlin, 264–370 (1989)

  9. Kirsch, W., Martinelli, F.: Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians. Commun. Math. Phys. 89(1), 27–40 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Kirsch, W., Simon, B.: Comparison theorems for the gap of Schrödinger operators. J. Funct. Anal. 75(2), 396–410 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kozlov, S.M.: Averaging of random structures. Sov. Math. Dokl. 19(4), 950–954 (1978)

    MATH  Google Scholar 

  12. Klopp, F.: Internal Lifshitz tails for random perturbations of periodic Schrödinger operators. Duke Math. J. 98(2), 335–396 (1999)

    Article  MathSciNet  Google Scholar 

  13. Klopp, F.: Lifshitz tails for alloy type models in a constant magnetic field. J. Phys. A 43, 474029 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. Lifshitz, I.: Structure of the energy spectrum of impurity bands in disordered solid solutions. Soviet Phy. JETP 17, 1159–1170 (1963)

    Google Scholar 

  15. Nakao, S.: On the spectral distribution of the Schrödinger operator with random potential. Jpn. J. Math. 3(1), 111–139 (1977)

    MATH  MathSciNet  Google Scholar 

  16. Najar, H.: Lifshitz tails for random acoustic operators. J. Math. Phys. 44(4), 1842–1867 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Najar, H.: Asymptotique de Lifshitz pour les opérateurs acoustiques aléatoires, Thesis from the University Paris 13, presented in November 2000

  18. Najar, H.: 2-Dimensional localization of acoustic waves in random perturbation of periodic media. J. Math. Anal. Appl. 322, 1–17 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pastur, L.: Behavior of some Wiener integrals as \(t \rightarrow \infty \) and the density of states of Schrödinger equations with random potentials. Teoret. Mat. Fiz. (Russian) 32(1), 88–95 (1977)

    MATH  MathSciNet  Google Scholar 

  20. Pastur, L., Figotin, A.: Spectra of random and almost-periodic operators. Springer, Berlin, Heidelberg (1992)

    Book  MATH  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  23. Simon, B.: Lifshitz tails for the Anderson model. J. Stat. Phys. 38, 65–76 (1985)

    Article  ADS  Google Scholar 

  24. Veselić, I.: Localization for random perturbations of periodic Schrödinger operators with regular Floquet eigenvalues. Ann. Henri Poincaré 3(2), 389–409 (2002)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

Both authors would like to thank Frédéric Klopp for fruitful discussions. H. Boumaza would also like to thank H.N., for its hospitality on two occasions. Research supported by CMCU Project 09/G-15-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Boumaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumaza, H., Najar, H. Lifshitz Tails for Continuous Matrix-Valued Anderson Models. J Stat Phys 160, 371–396 (2015). https://doi.org/10.1007/s10955-015-1255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1255-4

Keywords

Navigation